Investigating the Effect of Magnesium in Preventing Tremors after Anesthesia: A Systematic Review

Mojtaba Esmailpour Roshan¹, Hanieh Jafari²

¹Phd in Veterinary Medicine, Islamic Azad University, Garmsar Branch, Iran. ²Medical Engineering, Shahab Danesh University of Qom, Iran.

Abstract

Background and Purpose: In addition, magnesium is prescribed intravenously, epidurally, or intraperitoneally, each of which may have different effects depending on the surgical procedure. In this review, we searched for randomized clinical trials that compared preoperative magnesium administration with controls and included studies that assessed chills as a primary and possible outcome. The main objective of this study was to evaluate the effect of preoperative magnesium in the prevention of postoperative chills. Materials and methods: This article is a systematic review that searched for all quality articles published in the Cochrane database until the end of 2020. References were checked, PubMed and Web of Science 55,555. Results: The initial search identified 3,294 publications. 64 articles were included in this study. The results showed that the frequency of colds in the group receiving intravenous, epidural and intraperitoneal magnesium was significantly reduced compared to the control group. Conclusion: Prophylactic use of magnesium can reduce the severity and number of post-anesthetic chills and other post-anesthetic symptoms.

Keywords: Magnesium- cooling- side effects- anesthesia

Method

This study is a systematic review with sequential primary outcomes. Many studies that assessed tremor as one of the secondary endpoints or side effects were not evaluated [9]. The quality of evidence in these data has not been assessed. Therefore, it is unclear how effective preoperative magnesium is in preventing postoperative chills [10, 11].

In addition, magnesium is administered intravenously, epidurally, or intraperitoneally, each of which can have different effects in different surgeries [12]. In this review, we searched for randomized clinical trials that compared preoperative magnesium to a control group and included trials that assessed tremor as a variable and primary outcome. The main goal of this study was to evaluate the effect of pre-operative magnesium in preventing shivering after surgery.
analysis of randomized trial studies.

This study was based on the statement of 13 Meta-Analyses and the Cochrane Guidebook and was searched on the basis of the Cochrane Central Register of Tested, PubMed EMBASE, Controlled and Web of Science databases until the end of 2020 without time limit. The articles that met the inclusion criteria were evaluated separately by 2 authors and the differences were resolved by discussion. We sought randomized clinical trials that assessed the degree of shivering after magnesium administration compared with placebo or no medication in patients expected to have shivering after cardiac surgery. We excluded studies in which patients received cardiopulmonary bypass. We excluded studies that did not report tremors or that compared oral magnesium to placebo. We also excluded data from case reports, observational studies, letters to the editor, reviews, and animal studies.

Episodes pending

The primary endpoint was postoperative or intraoperative chills. In patients under general anesthesia, we only examined postoperative tremor because intraoperative tremor can be masked by neuromuscular blockers or other drugs. In patients who did not undergo general anesthesia, we assessed the degree of total tremor in the surgical and postoperative periods. If the number of people with tremors is recorded at multiple time points and the total number of tremor movements is not reported, we consider the tremor at the first time point.

We call tremors the first time after the operation chills. When chills were reported at different times during surgery, we used the last time during surgery. We did not limit the timing of tremor observation, since tremor is an important outcome throughout the postoperative period, in addition, it is uncomfortable for the patient and can cause cardiopulmonary disorders. Secondary outcomes included serum magnesium concentration before and after surgery, intubation time after surgery, length of stay in the post-anesthesia care unit (PACU), length of stay in the hospital, and side effects. Data collection A data collection sheet was created.

Including the number of patients in the study, age, physical condition of the American Society of Anesthesiology, type of anesthesia, anesthetic drugs used, type of surgery, route of magnesium administration, magnesium dose, continuous magnesium dose, time of magnesium administration, bolus

Estimating the duration of continuous injection, the number of cases with shivering, serum magnesium concentration, the time of removing the chip tube, the length of stay in PACU, the length of hospitalization and side effects. Two authors independently extracted the data from the studies using the existing form and reviewed the data. When the prevalence of shivering was not available in a study even if it was recorded, we tried to contact the corresponding author.

Heterogeneity was assessed using the I² statistic. A I² value between 30 and 60 indicates moderate heterogeneity, and a value above 60 indicates significant heterogeneity.

Results

The first search found 3294 articles. 64 clinical trials were included in this study. Since we were unable to obtain the full texts of some articles, we attempted to contact the editors of the journal. However, the full text of 11 articles was not available. Some studies showed that the number of tremor patients in both groups was. Intervention and control were the same, and other studies did not report the number of patients with tremor. Some authors indicated that tremor occurrences were reported, but then did not do so or only reported that tremor occurrences were similar. We tried to contact the authors of these articles to find out the number of patients with tremor and other relevant information. Two authors responded, the rest did not respond, so four clinical trials were excluded from the study because the authors did not respond. All submitted articles are in English, with the exception of six articles in Persian, Korean and Turkish.

The evaluated studies included data from 4303 people. 2300 of them magnesium (1114 by IV in 35 studies [6, 13-46]), by epidural in 12 studies [47-58], 638 by intraperitoneal injection in 16 studies [59-74] and 108 by Other routes received 4 interventions. All studies compared magnesium sulfate with placebo or no drug. Two studies compared several ways of magnesium administration. In relation to the magnesium sulfate drug manufacturing plant, it should be mentioned that the name of the used drug manufacturing plant was not mentioned in any of the articles published until 2014. In other articles that mention the manufacturing plant, all the drugs are supplied from the factory in the country of Mohaghegin and are not supplied from outside the country; For example, in Iranian studies, the magnesium sulfate of the Pasteur Institute of Iran, in the Egyptian study of the magnesium sulfate of Al-Sharki Company of Egypt, in the Chinese studies of the Chinese Infusion Pharmaceutical Company, etc.

Since there was a sufficient number of studies, a subgroup analysis was performed according to the ordering method. The frequency of tremor in the magnesium group was significantly increased by intravenous injection (hazard ratio 0.39, 95% CI, 0.299-0.054; 2 = 50%; n = 2124) and epidural injection (hazard ratio 24.95; CI). reduced., 43.0-13.0; 2 = 121%; n = 880) and intra-articular administration (risk ratio 64.0; 95% CI 43.0-96.0; 14 = 2% I; 1120 (n =) and intra-articular administration (risk ratio 01.1; 95% CI 19 ,2).-46.0;=2I%;81 (n=2I) Notably, 2I was assigned 0 percent for all 3 methods Adverse effects during extubation.

Approved in 4 studies (15, 19021-39 ), but there was no significant difference. ICU length of stay was shorter in the intravenous magnesium group compared to the placebo group (53 vs. 63 minutes; P = 0.04).

Serum Magnesium Concentration

This has been reported in 9 clinical trials in which magnesium was administered intravenously [13-18]. From a statistical point of view, there was no significant difference in the concentrations before the operation. Postoperative measurements were taken in the first
that intravenous magnesium is effective in preventing slight heterogeneity. No further research is needed to show check of the articles revealed that I2 is zero, indicating incidence of side effects. Intravenous magnesium was not associated with an increase in adverse outcomes. Therefore, magnesium should be considered in patients at risk of chills, such as young patients or those who have undergone prolonged surgery [82], to prevent uncomfortable chills. In addition, patients with impaired cardiac reserve and heart failure due to chills benefit from active warm-up and pharmacological prophylaxis of chills. This should be taken into account in the patient’s hemodynamics. The mechanism by which magnesium exerts its anti-distortion effect is unclear. During general or neuraxial anesthesia, body temperature tends to drop due to dilation of blood vessels. Vasoconstriction and chills are automatic temperature regulation mechanisms that prevent hyperthermia. Tremors cause increased oxygen consumption and carbon dioxide production, require muscle oxygenation, and result in blood vessel dilation that counteracts vasoconstriction [83,84]. It may not be as effective in preventing hypothermia, but it can still be harmful in patients with limited cardiac reserve. General and spinal anesthesia have been reported to lower patients’ tremor threshold [85,86].

The relationship between the effect of a dose of magnesium on the prevention of chills is unclear. A subgroup analysis by intravenous dose showed that less than 60 mg/kg magnesium sulfate would not increase tremor severity, but we were unable to determine the optimal dose from the results. The intravenous dose among included studies was 300 mg magnesium sulfate and although there was no statistical difference, the degree of shivering was lower in the magnesium group. Of note, only 12 studies comparing magnesium with intravenous magnesium showed a significant reduction in tremor frequency. We cannot conclude that intravenous magnesium sulfate up to 300 mg is effective in reducing chills [87].

The frequency of side effects did not increase with the administration of magnesium. Magnesium has been reported to have a sedative effect, but in our study postoperative magnesium administration did not result in sedation. Although magnesium has been shown to prolong the action of neuromuscular blockers [88], extubation time was not significantly increased in patients treated with magnesium. Magnesium has been associated with nausea and/or vomiting in some patient groups [89], but
this association has not been observed in the postoperative period. This may be due to savings in opioid use [90].

Some studies have shown that blood pressure or heart rate are significantly reduced after taking magnesium. Neither the previous nor our meta-analysis considered all studies evaluating the effectiveness of pruritus prevention. It might be worth investigating further in the future [91, 92].

In conclusion, as a result, a systematic review and a consistent analysis of previous studies have shown that intravenous magnesium significantly reduces chills in surgical patients.

A meta-analysis of studies did not show that epidural or intrathecal magnesium was effective in reducing tremor. And to determine the outcome, studies with a low risk of bias evaluating the anti-tremor effect of epidural and intracranial magnesium are needed.

Acknowledgments

Since ethical approval from universities is not required for meta-analyses and systematic reviews, there is no code of ethics for this study. At this point, we are extremely grateful for the cooperation of Mr. Mojtaba Ismailpour, one of the most efficient people in collecting articles on this topic, who helped us a lot in preparing this article.

References


47. Maulik SG, Chaudhuri A, Mallick S, Ghosh AK, Saha D, Bisui B. Role of Magnesium Sulfate in Prolonging the Analgesic Effect of Spinal Bupivacaine for Cesarean Section

Asian Pacific Journal of Cancer Biology • Vol 9• Issue 1


62. Roy S, Sri AS. A prospective, double blind randomized controlled study comparing the effects of magnesium sulphate versus clonidine as an adjunct to bupivacaine in sub umbilical surgeries. Journal of Evolution of Medical and Dental Sciences. 2015;4(54):9358-70.


64. Rashmi N. Comparative study of epidural fentanyl and fentanyl plus magnesium for postoperative analgesia: RGUHS. 2010;


72. Nath MP, Gang R, Talukdar T, Choudhary D, Chakrabarty A. To evaluate the efficacy of intrathecal magnesium sulphate for hystereomy for subarachnoid block with bupivacaine

72