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Introduction

Oral cancer often appears as squamous cell carcinoma 
in the mouth and remains a serious global health issue 
[1, 2]. Although treatments like surgery, radiotherapy, and 
chemotherapy have improved, they still cannot always 
fully control the tumor or maintain patients’ quality of life 
[3, 4]. As a result, researchers have turned their attention 
to natural compounds with anticancer effects, which 
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generally have fewer side effects [4, 5]. Curcumin found 
in turmeric (Curcuma longa) is one of these promising 
compounds because of its anticancer, anti-inflammatory, 
and antioxidant properties [4, 5]. It can help block 
cancer progression in various cancers, including oral 
cancer [3, 6, 7]. Despite its potential, curcumin’s poor 
water solubility and low bioavailability limit its clinical 
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use [4, 5, 8]. Large doses are often needed to achieve 
therapeutic levels, but these high doses can be expensive 
and toxic to healthy tissues [9, 10]. To overcome these 
problems, scientists are looking for new methods to boost 
curcumin’s effectiveness [3, 11]. Recently, nanotechnology 
and advanced drug delivery systems have gained 
attention for improving the performance of anticancer 
treatments and reducing side effects [9-12]. Liposomes 
widely considered safe and commonly used have a lipid 
bilayer structure similar to cell membranes, so they can 
carry both water-loving (hydrophilic) and water-hating 
(hydrophobic) substances at the same time [13, 14]. When 
curcumin is encapsulated in liposomes, it dissolves much 
better in watery solutions and stays stable longer inside the 
body [13, 15, 16]. Liposomes also help cancer cells take up 
more curcumin, improving the drug’s ability to slow cell 
growth and induce apoptosis in oral cancer cells [13, 17]. 
Putting curcumin in a liposomal delivery system offers 
several benefits. These include (1) boosting the amount 
of drug at the tumor site, (2) preventing the drug from 
breaking down too soon in the bloodstream, (3) reducing 
side effects on healthy tissue, and (4) releasing the drug 
slowly in a controlled way [9, 13, 14, 15, 16-19]. Overall, 
a nanoliposomal formulation of curcumin not only 
enhances its anticancer impact on oral cancer cells 
but also improves its pharmacological profile [9, 13]. 
The primary objective of this research is to design and 
evaluate a curcumin-loaded nanoliposomal formulation 
to enhance the solubility, stability, and cellular uptake 
of this compound in oral cancer cell lines. Accordingly, 
we plan to determine the formulation’s physicochemical 
properties, as well as assess its anticancer effects on oral 
squamous cell carcinoma cells. Through this effort, we 
aim to develop a more effective and less toxic therapeutic 
approach for oral cancer.

Materials and Methods

Materials
All essential reagents Curcumin, Cholesterol, 

Polyethylene Glycol 200, RPMI 1640 medium, Ethanol, 
Isopropanol, and Diethyl Ether were carefully sourced 
from Sigma to maintain high quality standards. Lecithin 
was obtained from Acros (Geel, Belgium). The SCC-9 and 
HN-5 oral cancer cell lines were generously provided by 
the Cell Bank of the Pasteur Institute of Iran.

Nanoliposomal Drug Preparation 
Liposomal nanoparticles were fabricated using the 

reverse phase evaporation method, renowned for its high 
encapsulation efficiency of therapeutic payloads. Initially, 
a precisely quantified mixture of lecithin (14 mM), 
cholesterol (10 mM), PEG 200 (2 mM), and curcumin 
(2 mM) was solubilized in a combined ethanol/methanol 
phase to ensure uniform dispersion of all constituents. 
Under vacuum, this solution was subjected to rotary 
evaporation (120 rpm, 45°C), yielding a continuous, 
homogeneous lipid film. Subsequently, the resultant 
film was rehydrated with phosphate-buffered saline 
(PBS, pH 7.2), facilitating the spontaneous assembly of 

curcumin-entrapped liposomal vesicles. To refine particle 
size distribution and bolster colloidal stability, the 
nanoliposomal suspension underwent ten minutes of 
bath sonication at 50 W (Bandelin Sonopuls HD 2070, 
Bandelin Elec., Germany). Blank liposomes, prepared 
identically but devoid of the therapeutic agent, were 
concurrently synthesized to serve as experimental controls. 
To ascertain the mean diameter of the nanoliposome, 
a specially prepared sample was generated at a 1:25 
ratio of nanoliposome to phosphate-buffered saline 
(pH 7.2). Nanoparticle concentration was quantified 
via absorbance measurements at 633 nm, while the 
hydrodynamic diameter and surface charge (zeta 
potential) were characterized using a Malvern Nano 
ZS3600 zetasizer. To determine the curcumin content 
within the formulations, atomic absorption spectroscopy 
(PerkinElmer, USA) was employed. The liposomal 
suspensions were subjected to high-speed centrifugation 
at 4°C and 12,000 rpm for 60 minutes, thereby facilitating 
the partitioning of encapsulated versus free drug. 
Following each centrifugation cycle, the supernatant 
was meticulously aspirated and discarded, leaving the 
liposomal pellet. Encapsulation efficiency (EE%) was 
subsequently calculated by subtracting the concentration 
of free curcumin (remaining in the supernatant) from 
the total initial curcumin content, as expressed by the 
following equation:

{EE%} = {Total Anti-Cancer Drug} - {Free Anti-
Cancer Drug} / {Total Anti-Cancer Drug} × 100.

In vitro Drug Release Study
A rigorous assessment of carrier-mediated drug release 

kinetics was conducted via a membrane diffusion assay 
in a phosphate-buffered saline medium (PBS, pH 7.2). 
In this protocol, a precisely measured 2 mL aliquot of 
the drug-loaded formulation encompassing 0.12 mg 
of the active compound was enclosed in dialysis bags 
(cellulose membrane, 14 kDa cutoff). These sealed bags 
were then submerged in 120 mL of PBS, maintained at 
37°C, and continuously stirred at 120 rpm to ensure a 
uniform diffusion gradient. At predetermined intervals 
(1, 5, 8, 14, 24, 34, and 48 hours), aliquots were carefully 
withdrawn from the external PBS reservoir and replaced 
with fresh buffer to preserve both total volume and 
concentration gradient. The withdrawn samples were 
subsequently analyzed using high-performance liquid 
chromatography (HPLC, Shimadzu, Japan) a technique 
renowned for its high precision to quantify the amount 
of drug diffused over time. The resultant release profiles 
were benchmarked against those of unencapsulated drug 
samples by employing a rigorously generated standard 
curve, thus providing a comprehensive evaluation of the 
carrier system’s efficacy in modulating drug discharge.

MTT test
The cytotoxic efficacy of the curcumin-based 

formulation was determined via the MTT assay and 
benchmarked against the conventional reference drug. 
Specifically, SCC-9 and HN-5 cell lines were seeded into 
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active compound within the nanoparticulate structure 
(Table 1).

Drug release study
A comprehensive examination of curcumin release 

kinetics from nanoparticulate systems was conducted via 
the membrane diffusion approach in phosphate-buffered 
saline (PBS) at a pH of 7.2. Intriguingly, the resultant 
release profiles exhibited a pronounced biphasic behavior, 
typified by an early burst phase followed by a gradual, 
sustained discharge over the ensuing 48 hours. During 
the meticulous dialysis procedure at the designated 
pH, the encapsulated curcumin maintained a measured 
and predictable release trajectory. Notably, quantitative 
analysis revealed that approximately 58% of the 
encapsulated curcumin was liberated from the liposomal 
constructs by the conclusion of the 48-hour observation 
window, as depicted in Figure 1.

In vitro cytotoxicity assay
The cytotoxic efficacy of curcumin-loaded liposomes 

was systematically assessed in comparison to that of 
conventional (free) curcumin using SCC-9 and HN-5 
oral cancer cell lines. Both cell types were exposed to 
equivalent concentrations of the liposomal formulation 
and the free drug for a 48-hour incubation period at 37°C. 
As depicted in Figure 2, the resulting dose-response 
profiles reveal a marked enhancement in cytotoxic 
potency for the liposomal curcumin, as evidenced 
by significantly lower IC₅₀ values relative to its free 
counterpart. Specifically, in SCC-9 cells, the IC₅₀ values 
were 85 µM for the liposomal formulation and 65 µM for 
free curcumin, whereas in HN-5 cells, the corresponding 
values were 70 µM and 45 µM, respectively. These 
findings suggest that liposomal encapsulation substantially 
augments curcumin’s cytotoxic activity, likely attributable 
to improved bioavailability, enhanced intracellular uptake, 
and a sustained release profile. The superior anticancer 
efficacy exhibited by the liposomal curcumin highlights 
its promise as a more potent therapeutic modality for the 
treatment of oral malignancies (Figure 2).

Discussion 

Oral cancer is one of the most prevalent malignancies 
within the head and neck region, often associated with 
poor prognosis, high recurrence rates, and resistance 
to conventional therapies [20]. Consequently, there 
is an urgent need for the development of targeted and 
effective therapeutic strategies with reduced systemic 
toxicity [21-22]. In this context, natural compounds with 
anticancer potential, such as curcumin, have garnered 
considerable attention [23]. To overcome these limitations, 

96-well plates and allowed to proliferate for 24 hours 
prior to exposure to varying concentrations of either the 
formulated curcumin or its free-drug counterpart for 48 
hours. Subsequently, the MTT solution was introduced, 
followed by a one-hour incubation to enable formazan 
crystal formation. The supernatant was then discarded and 
replaced with isopropanol to solubilize the crystals, after 
which the absorbance at 570 nm was recorded using an 
ELISA microplate reader. The percentage of cytotoxicity 
was derived according to the following relationship:

Cytotoxicity (%) = [1 − (Absorbance of treated cells 
/ Absorbance of control)] × 100

Cell viability was then calculated by subtracting 
the cytotoxicity value from 100%. The half-maximal 
inhibitory concentration (IC₅₀) was subsequently 
ascertained via the Pharm software.

Statistical Analysis 
All data underwent comprehensive statistical 

evaluation using SPSS (version 11), while every phase 
of toxicity assessment was conducted through the Pharm 
software platform.

Results

Characterization of nanoparticles
Characterization data indicated that the nanoformulation 

possessed an average particle size of 220 ± 6 nm 
(as determined by dynamic light scattering), accompanied 
by a zeta potential of approximately −28 ± 2 mV. These 
findings suggest a relatively stable colloidal system 
with limited agglomeration tendencies. Additionally, 
the encapsulation efficiency was estimated at 82 ± 3%, 
reflecting a notably high capacity for incorporating the 

Parameter Value Remarks
Average Particle Size 220 ± 6nm Determined via dynamic light scattering (DLS)
Zeta Potential −28 ± 2mV Indicates colloidal stability and reduced aggregation
Encapsulation Efficiency 82 ± 3% Demonstrates high active-compound loading capacity

Table1. Characterization of Nanoparticles

Figure 1. In Vitro Drug Release Studies Demonstrated a 
Sustained Release Profile, with a Moderate Burst Release 
in the Initial Hours, Followed by a Gradual Release Over 
48hours (n=3). Error bars represent the standard error of 
the mean (SEM).
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advanced nanostructured drug delivery systems including 
liposomes, polymeric nanoparticles, lipid-based carriers, 
and nanoemulsions have been developed [24-26]. 

These platforms enhance the solubility, stability, 
and bioavailability of curcumin, while enabling 
targeted and controlled drug release within tumor 
microenvironments [27]. Among them, liposomal 
curcumin formulations have shown particular promise 
due to their nanoscale size, biocompatibility, and 
improved cellular uptake [28]. The physicochemical 
characterization of the curcumin-loaded liposomal 
formulation revealed a uniform average particle size 
of approximately 220 ± 6 nm, which falls within the 
optimal nanoscale range for efficient cellular uptake and 
enhanced permeability across biological membranes. 
The negative zeta potential (−28±2mV) suggests strong 
colloidal stability and minimized particle aggregation, 
thereby contributing to prolonged circulation and 
predictable behavior under physiological conditions 
[29]. Furthermore, the high encapsulation efficiency 
(82 ± 3%) underscores the formulation’s capacity to 
effectively incorporate curcumin within the liposomal 
bilayers, thereby enhancing its solubility and protecting 
it from premature degradation [30]. In vitro drug release 
analysis demonstrated a distinct biphasic release profile 
in phosphate-buffered saline (pH 7.2), characterized by 
an initial burst release followed by a sustained release 
over 48 hours. This kinetic behavior is particularly 
advantageous in therapeutic contexts, as the early burst 
may facilitate rapid attainment of therapeutic drug levels, 
while the subsequent controlled release phase ensures 
prolonged exposure of cancer cells to the bioactive 
compound [31]. The release data, showing approximately 
58% cumulative release at 48 hours, further validates the 
formulation’s ability to modulate drug delivery over time 
an essential criterion for enhancing bioavailability and 
therapeutic efficacy. The cytotoxicity profiles observed 
in SCC-9 and HN-5 oral cancer cell lines substantiate 
the functional advantages of liposomal encapsulation. 
Compared to free curcumin, the liposomal formulation 

exhibited significantly lower IC₅₀ values in both cell lines, 
indicating enhanced antiproliferative activity. The greater 
cytotoxic potency of liposomal curcumin can be attributed 
to improved cellular uptake mechanisms associated with 
nanocarrier systems, as well as sustained intracellular 
release, which collectively facilitate increased drug 
accumulation within cancer cells. The disparity in IC₅₀ 
values between liposomal and free forms particularly 
in HN-5 cells (70 µM vs. 45 µM) further emphasizes 
the formulation’s potential for selective and enhanced 
targeting of malignant cells.

In conclusion, technology has greatly contributed 
to the advancement of various malignancies and other 
fields [32-39]. Technology has emerged as a key driver 
of progress across various scientific and industrial fields. 
In recent years, advanced technological tools have 
significantly improved the diagnosis and treatment of 
numerous diseases, including cancer [40]. Moreover, 
novel processing techniques such as plasma and dielectric 
barrier discharge have enabled the fabrication of porous, 
customizable scaffolds with enhanced mechanical 
properties for diverse applications [41]. In the realm 
of personalized medicine, next-generation sequencing 
technologies have played a crucial role in tailoring 
treatment approaches for complex diseases, leading 
to more effective patient-specific interventions [42]. 
Advanced materials engineering has also benefited 
from these technological developments, resulting in 
composite materials with tailored crystallinity and 
improved mechanical performance [43]. Furthermore, 
the application of innovative stochastic optimization 
models and modern management strategies has enhanced 
the resilience and efficiency of pharmaceutical supply 
chains, particularly under the pressures of global health 
crises [44-45]. In addition, artificial intelligence-based 
decision-making tools have been effectively applied to 
improve criteria ranking in sectors such as health tourism, 
demonstrating the broad applicability of these technologies 
[46]. Recent studies highlight the growing expansion of 
advanced technologies such as deep learning, neural 
networks, and experimental innovations across various 
fields including biomedical research, renewable energy, 
and hydrological forecasting, clearly demonstrating the 
transformative role of these technologies in addressing 
complex scientific and engineering challenges [47-52]. 
These findings support the hypothesis that liposomal 
delivery systems not only improve the physicochemical 
stability and bioavailability of hydrophobic compounds 
like curcumin but also amplify their anticancer efficacy. 
The integration of favorable nano-scale characteristics 
with controlled drug release and enhanced cytotoxic 
response positions this liposomal formulation as a 
promising candidate for further development in oral 
cancer therapeutics.

Figure 2. Cytotoxic Comparison between Liposomal 
Curcumin and Free Curcumin in SCC-9 and HN-5 Cells 
after 48 hours of Treatment (n = 3, *: p < 0.05,). Error bars 
represent the standard error of the mean (SEM).
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