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Introduction

According to American Cancer Society (2018) [1], 
Breast cancer is a group of diseases that cause abnormal 
cells to split without control and overpass other tissues 
both in men and mainly in women. They came out with a 
finding that breast cancer is 100 times more common in 
women than in men and estimates that each year, about 
1990 new cases of breast cancer in men will be diagnosed 
and that breast cancer will cause approximately 480 
deaths in men. According to GLOBOCAN 2012, breast 
cancer is the most common type of cancer for both sexes 
especially women worldwide with an estimated 14.1 
million new cases diagnosed in 2012. Globally, in 2012 
among the three most leading cancer; breast cancer is 
11.9%. According to World Health Organization [2], 560 
thousand women died as a result of breast cancer out of 1.6 
million cases diagnosed. The occurrence and prevalence of 
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breast cancer are escalating globally. Although a greater 
proportion of women are diagnosed in early disease stages 
because of national screening programs and awareness 
[3]. According to Azubuike SO et al, 2018 [4], Africa 
has extremely high mortality due to Breast cancer. 
Consequently, some expert including the World Health 
Organization endorse prompt diagnosis couple with apt 
and effective treatment as a valuable measure for reducing 
mortality via breast cancer [5]. 

It was also reported that the incidence and mortality 
rates of breast cancers are decreasing in developed 
countries while on the contrary in developing countries [6]
which is in agreement with the prediction of WHO (World 
Health Organization, 2005), that there will be a major 
increase in cancer incidence and mortality in developing 
countries as a result of increase in lifespan, development, 
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and advanced contact to risk factors [2].
Studies have been shown that breast cancer is a challenge 

globally even with the advances in investigation, diagnosis 
and treatment. Also, numerous prognostic factors such 
as old age, hereditary, delay in pregnancy, using oral 
contraceptive, early menstruation, late menopause and 
genetic are associated to breast cancer worldwide [2].

The aims of this study was (i) to use Cox regression 
model to evaluate the factors that affect the survival of 
patients with breast cancer, (ii) to use exact method, Efron 
method and Breslow method  of approximation to handle 
the occurrence of ties in the data and (iii) compare the 
performances of these methods. 

In order to determine the best model, Akaike 
Information Criterion (AIC) was calculated and compared. 
The rest of the paper is organised as follows; section 2 
of the paper describes the materials and methods used in 
analyzing the data. In section 3, analyses of data using 
Cox regression model with Breslow, Efron and Exact 
approximation methods are carried out and the result 
presented. Finally, discussion and conclusion of the results 
are presented in section 4.

Materials and Methods

Survival analysis is generally defined as a set of 
methods for analyzing data where the outcome variable 
is the time until the occurrence of an event of interest. 
The survival time is a length of time t that corresponds 
to the time period between a well-defined start-time 
t_0and the time t_c  of an event. This event can be either 
death, occurrence of a disease, marriage, divorce or any 
designated experience of interest that may happen to an 
individual, and the time to event or survival time can be 
measured in days, weeks and years. The right censoring 
is the most common censoring in survival time data; it 
assumed time to event T* and the right censoring time C 
for some individuals in the study. The exact survival time 
T of any individual will be known if and only if T*≤C. 
Conversely, if T*>C, the individual is a survivor and the 
exact survival time is censored at C. Hence, the observed 
time is T=min (T*,C) represented by a pair of random 
variable (T,δ), where δ signifies whether the survival time 
T corresponds to an event (δ=1) or right censored (δ=0). 
Survival time with censoring frequently occurred in many 
medical and reliability studies [7]. Analyzing censoring 
data has been a major challenge in medical research. 
Semi-parametric and parametric models are used for right 
censored data but Cox proportional hazards model is one 
of the most commonly used semi-parametric model which 
does not require any specific assumption about the shape 
of survival function. It is the most flexible continuous-
time model which estimates the relationship between 
the hazard rate and explanatory variable under the basic 
assumption that survival time are untied [8] but in actual 
fact, there is always some smallest time unit that ties can 
occur if time are measure in a flawlessly continuous scale. 
Conversely, in many data sets, ties are present typically 
due to the fact that failure times are continuous and only 
reported to the nearest day. Cox (1972) [9] proposed 

a proportional hazards model for event times when the 
event times are continuously distributed and the possibility 
of ties is ignored but in the analysis of survival time data, 
ties between event times are important to consider when 
fitting the Cox model (Cox, 1972) [9] seeing that the Cox 
partial likelihood depends largely on the order of events. 

Often times, survival data contain tied observations; 
that is, two or more individuals in the dataset share the 
same time and these need to be taken care of. Although, 
many research approaches assume that for continuous 
time; equal survival times of a sample have probability 
zero but this assumption is violated if many ties are 
present. The three broadly used methods to treat ties 
between event times in the Cox proportional hazards 
model are: the exact partial likelihood method [10], 
Breslow approximation [11] and Efron approximation 
[12]. According to Huang and Liu (2007), the ideal method 
of handling ties under Cox regression model formulation 
is the exact partial likelihood method [7].

Let Zi (i=1,2,…,m) be the value of covariates for 
the ith individual, the proportional hazards model for ith  

individual at time t can be written as:

where λo (t) is the baseline hazard at time t.
            exp (zi β) is the effects of covariates on the 

hazard for the event.

According to Lawless (2003), the Cox partial 
likelihood function is used to evaluate the estimates of 
the coefficients, where the partial likelihood is given by

where k is the number of different observed event 
times, zj is the covariates vector at time tj and rj is the risk 
set which includes individuals whose observed event time 
or censoring time is greater than or equal to tj [13].

Breslow (1975) [11] suggests the summing up of 
covariate related components for all subjects experiencing 
the event at a given time tj and raising the result to a 
power equal to the number of events tied at tj. The partial 
likelihood function that uses this approach is defined as

Nevertheless, if the number of tied events for any 
time tj is quite large, this method might not give a good 
approximation of the partial likelihood function [14].

Efron [12] partial likelihood function is then proposed 
as an alternative estimator approximated as follows;
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handling ties. 
All analyses were carried out using STATA (version 

14.0) statistical software.

Results 

A total number of 300 patients (8.33% males) with 
breast cancer were included in the analysis. Based on 
descriptive analysis, of the 300 patients, 97 were dead 
and the others were right censored. 140 (46.67%) of the 
patients have the cancer on their left breast, 135 (45%) of 
them on their right breast while the remaining 25 (8.33%) 
have it on both breasts. Patients whose ages falls between 
36-50 years are the most affected age-group followed by  
51-65 years. Using Cox model, we compared Breslow, 
Efron and exact partial likelihood using AIC to know the 
best estimation method for breast cancer data.

Discussion

According to the result, using the three methods 
of handling ties for Cox regression model which are 
presented in Tables 1, 2 and 3, age of the patients has 
significant effect on mortality rate of patients with breast 
cancer. Patients in the age groups; <35years, 35-50 and 
51-65years are less likely to die from breast cancer 
compared to those in age group >65years. Patients with 
cytological diagnosis are more at risk of death due to breast 
cancer. Although, the hazard ratio in the three estimation 
methods are approximately similar but from the AIC, 
Exact partial likelihood (776.666) is better than Breslow 
(904.165) and Efron (901.621).

In conclusion, Cox regression model is a semi-
parametric and most frequently used model for the 
analysis of prognosis factors in clinical research. Perhaps 
it estimates the relationship between the hazard rate and 
explanatory variable under the basic assumption that 
survival times are untied [8] but in actual fact, there is 
always some smallest time unit that ties can occur. In the 
analysis of survival time data, ties between event times 
are imperative to consider when fitting the Cox model [9]. 

The exact method is the discrete of partial likelihood 
function. It based on the continuous likelihood under 
the assumption that if there are tied events, that is due to 
the inaccurate nature of our measurement, and that there 
must be some true ordering. Then, all possible orderings 
of the tied events are calculated, and the probabilities of 
each event are summed [15].

Moreover, if the number of tied events is very small, 
all three methods give very similar results but if there 
are no ties, all methods lead to exactly the same results.

In order to determine the best estimation, Akaike 
Information Criteria (AIC) is used. The AIC is a measured 
of the goodness of fit of an estimated statistical model, 
estimating the quality of each model relative to each of 
the other models [16].

            AIC = -2log (L) + 2p
where p is the number of model parameter
            L is the maximum value of the likelihood 

function for the estimated model

Analysis of Data
The present study used data from 300 breast cancer 

patients; 275 females and 25 males who were admitted 
at University of Ilorin Teaching Hospital (UILTH) which 
covers a period of five (5) years (2011 to 2016). The record 
of each patient contained information of variables; length 
of stay in hospital (in days), sex, age of patients, location 
of cancer, mode of diagnosis and outcomes which indicate  
whether the patients is dead or alive. Survival time is 
defined as length of admission before death occurs, while 
those who were still alive at the time of data collection 
were right-censored. The analysis was carried out using 
Cox regression model with three estimations methods of 

Factors         Categories Hazard Ratio 95% Credible Interval P-value
Gender Male ** 1

Female 0.652 (0.333-1.277) 0.213
Age- Group <35 0.52 (0.247-1.094) 0.085

35-50 0.396 (0.223-0.701) 0.001
51-65 0.523 (0.293-0.931) 0.028
>65** 1

Location of Cancer Left Breast 0.909 (0.464-1.778) 0.78
Right Breast 0.57 (0.280-1.159) 0.121

Both Breasts** 1
Mode of Diagnosis Histological** 1

Cytological 1.046 (0.685-1.597) 0.836
AIC# 904.1649

Table 1. Prognostic Factors of Breast Cancer using Cox Regression Model with Breslow Estimation Method

** Reference category; #Akaike Information Criteria; P-value<0.05
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This present study aimed at determining the best 
estimation method of handling ties in breast cancer 
data as the right censoring. Three different methods for 
Cox regression model were considered in this study 
namely Breslow method, Efron method and exact partial 
likelihood method. Akaike Information Criterion (AIC) 
was used to evaluate the performance of each model. Four 
independent variables used are the prognostic factors on 
survival of patients for each estimation methods with 
different estimates. The results also showed significant 
differences among age groups with respect to the risk 
of dying.
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