Survival Outcomes and Prognostic Factors of Borderline Ovarian Tumors

  1. Phansenee Supreechaya ,
  2. Charuwan Tantipalakorn ,
  3. Tanarat Muangmool ,
  4. Kittipat Charoenkwan ,
  5. Prapaporn Suprasert ,
  6. Jatupol Srisomboon

Vol 6 No 3 (2021)

DOI 10.31557/apjcc.2021.6.3.249-255

Abstract

Background and Objective: Borderline ovarian tumor (BOT) is a distinct but heterogeneous group of tumors defined by histopathology as atypical epithelial proliferation without stromal invasion. Women with BOT are usually younger than those with invasive carcinoma. This study aimed to evaluate the survival outcomes and prognostic factors of patients with BOT in a single institute in the northern region of Thailand.
Methods: The medical records of patients with BOT who were treated at Chiang Mai University Hospital between January 1, 2008 and December 31, 2019 were reviewed. The survival outcomes were analyzed by the Kaplan-Meier method and prognostic factors were analyzed by univariate and multivariate approaches.
Results: 168 patients with BOT were enrolled in the study. The median age was 48.8 years. At the median follow-up time of 25.4 months, 9 patients (5.3%) developed recurrence and 2 (1.1%) experienced progression to invasive carcinoma. The 5-year progression-free survival (PFS) and overall survival were 93.2% and 97.4%, respectively. By univariate analysis, advanced stage (p=0.02), tumor size smaller than 10 cm (p=0.03), conservative surgery (p=0.03), and bilateral tumors (p=0.07) were significantly associated with worse PFS. Hysterectomy was a protective factor for recurrence with the hazard ratio of 0.09 (95% CI, 0.01 – 0.77; p= 0.03). Cell types, pelvic lymphadenectomy, micro-invasion, and non-invasive peritoneal implant did not significantly affect PFS. By multivariate analysis, early stage (p=0.01), tumor size larger than 10 cm (p=0.04), and hysterectomy (p=0.03) were significantly associated with better survival.
Conclusion: Patients with BOT had excellent survival outcomes. Tumor size of larger than 10 cm, early-stage disease, and hysterectomy were significant prognostic factors for better survival outcomes. Conservative surgery should be offered to patients who desire to preserve future fertility and long-term follow-up is needed to assure recurrence - free.

Introduction

Borderline ovarian tumor (BOT) or atypical proliferative tumor is once known as a tumor of low malignant potential (LMP). The diagnosis of BOT is based on pathological findings of atypical proliferation as seen in epithelial ovarian cancer, without stromal invasion. Occasionally, a non-invasive peritoneal implant could be found in patients with BOT. According to WHO classification in2014, a micro-invasion has been reported, in which the stromal invasion is observed less than 5 mm in the greatest linear dimension [1].

BOT is the tumor of a young age group and one-third of them are under 40 years of age [2, 3]. Most patients with BOT present at an early stage, and the prognosis is generally favorable. The pathology of BOT is classified into 6 subtypes in which the most prevalent type is serous followed by mucinous, whereas endometrioid, clear cell, Brenner, and mixed sero-mucinous types are rarely found [1, 4].

Treatment for BOT depends on fertility desire. For patients who no longer need to preserve future fertility, complete surgical resection is usually performed as the same standard treatment for epithelial ovarian cancer. A certain study noted that in BOT, pelvic lymph node dissection is not necessary to perform as there is no benefit in improving the survival rate [5]. For patients who need to preserve future childbearing, fertility-sparing surgery should be offered by performing unilateral salpingo-oophorectomy (SO), sparing uterus, and contralateral normal ovary. Ovarian cystectomy could be performed in the setting of patients who have undergone contralateral SO or tumors involve bilateral ovaries without minimizing pregnancy rate [6]. However, the recurrence rate in patients undergoing ovarian cystectomy was significantly higher than those undergoing SO [7]. Adjuvant chemotherapy remains a controversial issue for BOT [4]. One study reported that chemotherapy was associated with worse survival outcomes [8].

In general, the recurrence rate of BOT patients is quite low with adequate follow up protocol. However, several factors have been identified as an increased risk of recurrence, i.e., conservative surgery, suboptimal surgery, non-invasive peritoneal implant, micro-invasion, and micropapillary architecture [9, 10].

This study was conducted to evaluate the survival outcomes and to identify the prognostic factors of patients with BOT undergoing surgical treatment at Chiang Mai University Hospital in the northern region of Thailand.

Materials and Methods

After approval of the Research Ethics Committee of Chiang Mai University Hospital (CMUH), the data were collected by retrospective review from January 1, 2008, to December 31, 2019 at CMUH, Chiang Mai, Thailand. The study population was women with BOT diagnosed from pathological examination and received treatment at the CMUH. The pathology slides were reviewed by gynecologic pathologists if the patients were referred from other hospitals.

Patients with malignant ovarian tumors, other concurrent malignancy, and incomplete medical records were excluded. The medical records including demographic data, preoperative tumor markers (CA125, CA19-9, and CEA), pathological characteristics (cell subtypes, non-invasive implants, micro-invasion) were retrieved from the electronic database of gynecologic oncology units.

The surgical procedure varied depending on the surgeon’s discretion, the frozen section results, and intraoperative findings. In cases with fertility desire, conservative surgery was carried out by performing unilateral SO, preserving contralateral normal ovary without hysterectomy. Hysterectomy with bilateral SO was defined as definitive surgery, while omentectomy, lymphadenectomy, and peritoneal biopsy were defined as surgical staging procedures.

All patients were followed every 3 months during the first year of surgery, every 4 months in year 2, every 6 months in year 3-5, and then yearly after year 5. Surveillance included clinical examination, pelvic examination, and tumor markers. Pelvic ultrasound was performed instead in those who were not able to undergo pelvic examination. CT scans or MRIs were used in patients with suspected recurrent diseases. Progression-free survival was the duration since the surgery to the presence of recurrent diseases and overall survival was the duration since the surgery until death.

Statistical analyses were performed using STATA version 15 (College Station, TX: StataCorp LLC.). Descriptive statistics were reported by median (interquartile range) for the continuous variables and frequency (percentage) for categorical variables. Univariate and multivariate analyses were used to identify prognostic factors in the progression-free survival of BOT. The factors with a p-value of ≤ 0.10 in the univariate analysis were further analyzed in multivariate logistic regression models. The survival function was estimated by the Kaplan-Meier method and distribution for each group was compared by the log-rank test. A p-value of ≤ 0.05 was considered statistically significant.

Results

During the study period, 197 patients with BOT were identified in the database. Eighteen patients were excluded after pathological review, i.e., invasive epithelial ovarian cancer (7), benign mucinous cystadenoma (1), concurrent cancer (8), mucinous BOT from gastro-intestinal malignancy metastases (2). Six patients had incomplete medical records and 5 were lost to follow-up after the operation. Therefore, 168 patients were eligible for analysis. The clinical characteristics are shown in Table 1.

Table 1. Clinical Characteristics of 168 Patients with Borderline Ovarian Tumor.

Characteristics Number (%) or Median (Range)*
Age (Years) 48.4 (10.5-79.1) *
< 50 91 (54)
≥ 50 77 (46)
CA 125 (U/mL) (n=143) 52 (26.3-143.3)
< 35 55 (38)
≥ 35 90 (62)
CA 19-9 (U/mL) (n=137) 22.6 (6.6-119.1)
< 39 86 (62)
≥ 39 52 (38)
CEA (ng/ml) (n=136) 2.0 (1.1-4.6)
< 5.2 107 (78)
≥ 5.2 30 (22)
Primary treatment  
Definitive surgery 123 (73)
Conservative surgery 45 (27)
Pelvic lymphadenectomy  
No 105 (62)
Yes 63 (38)
Para-aortic lymphadenectomy  
No 144 (86)
Yes 24 (14)
Adjuvant chemotherapy  
No 153 (91)
Yes 15 (9)

*Descriptive statistics were reported by median (interquartile range) for the continuous variables and frequency (percentage) for categorical variables; * Age was described by median (minimum-maximum)

Among 168 patients, 91 (54%) patients were younger than 50 years old. Elevated serum CA125 (> 35 U/mL) was noted in 90 (62%) patients. High serum CA19-9 (> 39 U/mL) and serum CEA (> 5.2 ng/ml) were found in 52 (38%) and 30 (22%) patients, respectively. Definitive surgery was performed in 123 patients (73%), while conservative surgery was carried out in 45 (27%). Pelvic and para-aortic lymphadenectomy was performed in 63 (38%) and 24 (14%) patients, respectively. Adjuvant chemotherapy with paclitaxel with carboplatin was administered in 15 patients (9%).

Tumor characteristics are shown in Table 2.

Table 2. Tumor Characteristics of 168 Patients with Borderline Ovarian Tumor.

Variables Number of patients (%)
Cell type  
Endometrioid 8 (5)
Mucinous 118 (70)
Serous 40 (24)
Mixed 2 (1)
Stage  
I 156 (93)
II-III 12 (7)
Tumor size (cm) (n=166)  
≤ 10 30 (18)
> 10 136 (82)
Pelvic lymph node involvement (n=63)  
No 61 (97)
Yes 2 (3)
Para-aortic lymph node involvement (n=24)  
No 24 (100)
Yes 0 (0)
Micro-invasion  
No 137 (82)
Yes 31 (19)
Non-invasive implant  
No 152 (91)
Yes 16 (10)
Laterality  
Unilateral 151 (90)
Bilateral 17 (10)

Descriptive statistics were reported by frequency (percentage) for categorical variables.

The most common cell type of BOT was mucinous (70%) followed by serous (24%) and endometrioid (5%). One hundred and fifty-six (93%) patients had stage I BOT while the remaining 12 (7%) had stage II and III diseases. Eighty-two percent of the patients had tumor size larger than 10 cm. The average tumor size was 17.3 cm. Two of 63 patients (3%) had pelvic lymph node metastasis where none of the 24 patients had para-aortic lymph node metastasis. From the histological review, 31 patients had microinvasive peritoneal implants and 16 had non-invasive peritoneal implants.

Oncologic outcomes are shown in Table 3.

Table 3. Oncological Outcomes of Borderline Ovarian Tumor Patients (N=161*).

Characteristics Number of patients (%) or Median (Range)*
Follow-up time (months) 25.4 (9.9-56.3)
Alive 156 (96)
Recurrence 9 (5.5)
Recurrence with borderline tumor 7 (4.3)
Recurrence with invasive carcinoma 2 (1.2)
Died related to ovarian tumor 1 (0.6)
Died from other causes 6 (3.7)
5-year progression-free survival (%) 93.2 (83.7-97.2)
5-year overall survival (%) 97.4 (92.1-99.2)

*7 patients were lost to follow-up

During the median follow-up time of 25.4 months, only 9 patients (5.5%) developed disease recurrence with an estimated 5-year progression-free survival (PFS) of 93.2%. Among these recurrences, 6 and 3 patients had prior stage I and stage II –III, respectively. Of the 9 patients with recurrences, 4 were serous and mucinous types each, the other 1 was endometrioid type. 8 patients had single site recurrence and 1 had recurrence at multiple sites. Among 9 patients with recurrences, 6 were treated by conservative surgical excision, while the remaining 3 underwent definitive surgery. Bilateral BOT was found in 3 patients and only 1 underwent lymphadenectomy. Two patients developed invasive tumor recurrence. One with pelvic lymph node recurrence of endometrioid adenocarcinoma was treated with surgical excision. The remaining 1 with supraclavicular lymph node recurrence of serous adenocarcinoma was treated with chemotherapy.

Five-year overall survival of the 168 BOT patients was 97.4% with 7 deaths. One patient with invasive endometrioid adenocarcinoma recurrence had tumor invasion at rectum and ureters causing severe hemorrhage and renal insufficiency. Five patients died from other underlying diseases and the remaining 1 died from cholangiocarcinoma occurring 6 years after the detection of BOT.

Prognostic factors were analyzed using the univariate and multivariate analyses as shown in Table 4.

Table 4. Univariable and Multivariable Analyses of 5-Year Progression-Free Survival.

Variables 5-Year Progression-Free Survival
  Univariable Multivariable
  HR (95%CI) p-value aHR (95%CI) p-value
Cell type 0.48
Mucinous 1
Endometrioid 5.93 (0.54-65.53)
Serous 3.09 (0.43-21.97)
Mixed 0.00 (Not report)
Tumor size (cm.) 0.03 0.04
> 10 1 1
≤ 10 7.67 (1.28-46.06) 9.68 (1.17-80.25)
Stage 0.02 0.01
I 1 1
II-III 8.09 (1.35-48.51) 21.17 (2.04-219.75)
Primary treatment 0.03
Definitive surgery 1
Conservative surgery 11.08 (1.24-99.43)
Pelvic lymphadenectomy 0.38
No 1
Yes 0.38 (0.04-3.37)
Hysterectomy 0.03 0.03
No 1 1
Yes 0.09 (0.01-0.77) 0.07 (0.01-0.74)
Microinvasion 0.95
No 1
Yes 0.93 (0.1-8.3)
Noninvasive implant 0.63
No 1
Yes 1.71 (0.19-15.3)
Laterality 0.07
Unilateral 1
Bilateral 5.33 (0.89-31.9)

HR, hazard ratio; aHR, adjusted hazard ratio, adjusted for tumor size and hysterectomy. Variable selection was considered by forward method with p ≤ 0.10

In univariate analysis, PFS was significantly worse in patients with advanced stage (P = 0.02), tumor size ≤ 10 cm (p = 0.03), conservative surgery (p = 0.03), and bilateral tumors (p = 0.07). Interestingly, hysterectomy was a protective factor with a hazard ratio (HR) of 0.09 (95% CI 0.01 – 0.77, p = 0.03). Cell types, pelvic lymphadenectomy, micro-invasion, and non-invasive peritoneal implants were not significantly associated with survival outcomes. In multivariate analysis, early stage, tumor size > 10 cm, and hysterectomy were significantly associated with better survival.

Discussion

This study showed that patients with BOT had an excellent prognosis. More than 90% of the patients were detected in the early stage similar to the previous report [11]. The most common cell subtype was mucinous accounting for 70% in our study resembling many studies in East Asia [12-14]. In contrast, serous BOT was more commonly found in North America, Europe, and Middle East. The precise cause of the differences in the histologic distribution in each region remains elusive [15].

Concerning the oncological outcomes, the 5-year PFS of BOT patients in our study was relatively high at 93.2% with 1.2% progression rate to invasive cancer. The previous study reported an approximately 2-3% progression rate [16]. With the low recurrence rate of BOT in this study (5.3%), univariate and multivariate analyses were carried out and showed that advanced stage, tumor size > 10 cm and not performing hysterectomy were significantly associated with adverse survival outcomes. However, generalizability of these findings may not be applicable. In previous study, the significant prognostic factors were advanced stage, age older than 65 years, and the presence of micro-invasion. In univariate and multivariate analyses, hysterectomy was found to be a significant protective factor for recurrence [14]. This may be due to performing bilateral salpingo-oophorectomy [17]. In a case that does not require fertility, hysterectomy should be considered as a standard of treatment.

Many studies reported an increase of recurrence by conservative surgery, especially ovarian cystectomy [6, 18, 19]. In a meta-analysis, the recurrence rates were frequently noted in patients undergoing ovarian cystectomy, bilateral ovarian cystectomy, unilateral salpingo-oophorectomy (SO), and unilateral SO with contralateral cystectomy accounting for approximately 25.3%, 25.6%, 12.5%, and 26.1%, respectively. The better outcomes in patients treated with unilateral SO was observed when compared to those treated with ovarian cystectomy (odds ratio for recurrence reduction = 2.200, 95% CI = 0.793-2.841, p < 0.0001) [20]. However, some

studies reported the safety of using conservative surgery [21, 22]. In our study, conservative surgery was one of the risk factors for recurrence in univariate analysis but was not significant in multivariate analysis. Therefore, conservative surgery could be offered in selected cases in whom the risk should be informed to the patients and long-term follow-up is required to detect tumor recurrence [23, 24].

BOT tends to have a relatively large tumor size. The average size of mucinous tumors was approximately 13.0-14.9 cm larger than that of serous tumors which were 7.2-7.5 cm [25]. The mean tumor size of BOT in our study was 17.3 cm. Tumor size of larger than 10 cm was significantly associated with a lower recurrence rate regardless of cell type. Previous study by Chen et al., (2017) reported that a tumor diameter larger than 10 cm had better PFS (HR 0.26, 95% CI 0.09-0.70). The strong evidence explaining this correlation remains unknown. Accordingly, patients with larger BOT do not always experience worse oncological outcomes. Therefore, conservative surgery can be offered to younger patients with large tumor size.

The recurrences of BOT in our study were mostly found in patients with advanced stage similar to the previous study [26]. However, the stage of BOT did not significantly affect survival in one study [27]. The existence of non-invasive implantation and micro-invasion did not increase the risk of recurrence [28, 29]. However, these histologic factors could be controversial for surgeons on oncological outcomes and the selection of extension of surgery, especially micro-invasion. Although, many studies illustrated that micro-invasion increased the risk of recurrence, it did not affect survival outcomes and can be successfully treated by the second operation [30]. Pelvic lymphadenectomy was performed in 37% of our BOT patients and 3% had lymph node metastasis. Pelvic lymphadenectomy did not affect the recurrence in univariate analysis. This operation is no longer needed in surgical treatment for BOT [5].

The strength of this study was that all cases were treated in a single institute and the specimens were pathologically reviewed by expert gynecologic pathologists. However, some limitations other than the retrospective nature exist including the short median follow-up time at 25.3 months and a variety of surgical procedures for patients with BOT. Many patients attended later follow-up at other hospitals near home due to public health policy. Therefore, long-term survival outcomes could not be evaluated. The role of tumor marker as preoperative diagnostic methods and adjuvant chemotherapy in BOT remain controversial. These issues were not focused on this research and further study is required to evaluate the precise outcomes.

In conclusion, patients with BOT had an excellent survival outcome. Tumor size larger than 10 cm, early-stage disease, and hysterectomy were significant prognostic factors for better survival. Conservative surgery should be offered to patients who desire to preserve future fertility and long-term follow-up is needed to assure recurrence - free.

Acknowledgments

The authors wish to thank Faculty of Medicine Research Fund, Chiang Mai University, for the financial support in this study.

Conflict of Interest

The authors have no conflict of interest to disclose.

Author Contributions

SP, CT and JS contributed to the literature search, study concepts, study design and data collection. SP, JS, KC and TM contributed to the data analysis and interpretation of data. SP, JS, PS and CT contributed to the drafting of the manuscript. All authors contributed to reviewing and approval of the final version of the manuscript.

References


  1. Ovarian borderline tumors in the 2014 WHO classification: evolving concepts and diagnostic criteria Hauptmann Steffen, Friedrich Katrin, Redline Raymond, Avril Stefanie. Virchows Archiv.2016;470(2). CrossRef
  2. Trends in incidence, treatment and survival of borderline ovarian tumors in the Netherlands: a nationwide analysis Schuurman Melinda S., Timmermans Maite, van Gorp Toon, de Vijver Koen K. Van, Kruitwagen Roy F. P. M., Lemmens Valery E. P. P., van der Aa Maaike A.. Acta Oncologica.2019;58(7). CrossRef
  3. Borderline ovarian tumors in Sweden 1960-2005: Trends in incidence and age at diagnosis compared to ovarian cancer Skírnisdóttir Ingiridur, Garmo Hans, Wilander Erik, Holmberg Lars. International Journal of Cancer.2008;123(8). CrossRef
  4. Diagnosis, Treatment, and Follow‐Up of Borderline Ovarian Tumors Fischerova Daniela, Zikan Michal, Dundr Pavel, Cibula David. The Oncologist.2012;17(12). CrossRef
  5. Clinical Predictors of Recurrence and Prognostic Value of Lymph Node Involvement in the Serous Borderline Ovarian Tumor Qian Xue-qian, Hua Xiao-ping, Wu Juan-hong, Shen Yuan-ming, Cheng Xiao-dong, Wan Xiao-yun. International Journal of Gynecological Cancer.2018;28(2). CrossRef
  6. Behaviour of ovarian tumors of low malignant potential treated with conservative surgery De Iaco P., Ferrero A., Rosati F., Melpignano M., Biglia N., Rolla M., De Aloysio D., Sismondi P.. European Journal of Surgical Oncology (EJSO).2009;35(6). CrossRef
  7. Oncologic and obstetric outcomes of conservative surgery for borderline ovarian tumors in women of reproductive age Lee Se Yun, Choi Min Chul, Kwon Bo Ram, Jung Sang Geun, Park Hyun, Joo Won Duk, Lee Chan, Lee Je Ho, Lee Joon Mo. Obstetrics & Gynecology Science.2017;60(3). CrossRef
  8. Association between chemotherapy and disease-specific survival in women with borderline ovarian tumors: A SEER-based study Wang Yichen, Sun Haiyan, Yu Aijun, Zhu Tao, Chen Xi. European Journal of Obstetrics & Gynecology and Reproductive Biology.2019;242. CrossRef
  9. Borderline Tumors of the Ovary: Clinical Course and Prognostic Factors Ewald-Riegler Nina, du Bois Oya, Fisseler-Eckhoff Annette, Kommoss Friedrich, Harter Philipp, Traut Alexander, Hils Rita, du Bois Andreas. Onkologie.2012;35(1-2). CrossRef
  10. Ovarian Serous Tumors of Low Malignant Potential (Borderline Tumors): outcome-based study of 276 patients with long-term (> or =5-year) follow-up Longacre Teri A, McKenney Jesse K, Tazelaar Henry D, Kempson Richard L, Hendrickson Michael R. American Journal of Surgical Pathology.2005;29(6). CrossRef
  11. Long-Term Survival and Patterns of Care in Women with Ovarian Tumors of Low Malignant Potential Trimble Cornelia Liu, Kosary Carol, Trimble Edward L.. Gynecologic Oncology.2002;86(1). CrossRef
  12. Comparison of Laparoscopic and Open Surgery for Patients With Borderline Ovarian Tumors Jung Hee-Jung, Park Jeong-Yeol, Kim Dae-Yeon, Suh Dae-Shik, Kim Jong-Hyeok, Kim Yong-Man, Kim Young-Tak, Nam Joo-Hyun. International Journal of Gynecologic Cancer.2018;28(9). CrossRef
  13. Mucinous Tumor of Low Malignant Potential (“Borderline” or “Atypical Proliferative” Tumor) of the Ovary Khunamornpong Surapan, Settakorn Jongkolnee, Sukpan Kornkanok, Suprasert Prapaporn, Siriaunkgul Sumalee. International Journal of Gynecological Pathology.2011;33(3). CrossRef
  14. Risk Factors for Progression to Invasive Carcinoma in Patients With Borderline Ovarian Tumors Song Taejong, Lee Yoo-Young, Choi Chel Hun, Kim Tae-Joong, Lee Jeong-Won, Bae Duk-Soo, Kim Byoung-Gie. International Journal of Gynecologic Cancer.2014;24(7). CrossRef
  15. Histologic distribution of borderline ovarian tumors worldwide: a systematic review Song Taejong, Lee Yoo-Young, Choi Chel Hun, Kim Tae-Joong, Lee Jeong-Won, Bae Duk-Soo, Kim Byoung-Gie. Journal of Gynecologic Oncology.2013;24(1). CrossRef
  16. Behavior of Borderline Tumors With Particular Interest to Persistence, Recurrence, and Progression to Invasive Carcinoma: A Prospective Study Zanetta Gerardo, Rota Sonia, Chiari Stefania, Bonazzi Cristina, Bratina Giorgio, Mangioni Costantino. Journal of Clinical Oncology.2001;19(10). CrossRef
  17. Is there a justification for hysterectomy in patients with borderline ovarian tumors? Ouldamer L., Lacoste C., Cormier B., Arbion F., Marret H., Jallais L., Fignon A., Body G.. Surgical Oncology.2016;25(1). CrossRef
  18. Fertility preservation in women with borderline ovarian tumors - how does it impact disease outcome? A cohort study Helpman Limor, Yaniv Assaf, Beiner Mario E., Aviel-Ronen Sarit, Perri Tamar, Ben-Baruch Gilad, Hogen Ben-David Liat, Jakobson-Setton Ariella, Korach Jacob. Acta Obstetricia et Gynecologica Scandinavica.2017;96(11). CrossRef
  19. Prognostic factors for recurrence after conservative treatment in a series of 119 patients with stage I serous borderline tumors of the ovary Uzan C., Muller E., Kane A., Rey A., Gouy S., Bendiffallah S., Duvillard P., Fauvet R., Darai E., Morice P.. Annals of Oncology.2014;25(1). CrossRef
  20. Conservative surgery in ovarian borderline tumours: A meta-analysis with emphasis on recurrence risk Vasconcelos Inês, de Sousa Mendes Miguel. European Journal of Cancer.2015;51(5). CrossRef
  21. Fertility-sparing surgery for young patients with borderline ovarian tumors (BOTs): single institution experience Chen Rui-fang, Li Jun, Zhu Ting-ting, Yu Hai-lin, Lu Xin. Journal of Ovarian Research.2016;9(1). CrossRef
  22. The Impact of Surgical Staging on the Prognosis of Mucinous Borderline Tumors of the Ovaries: A Multicenter Study Gungorduk K, Asicioglu O, Braicu EI, et al . Anticancer Research.2017;37(10). CrossRef
  23. Conservative surgery for borderline ovarian tumors: A review Tinelli Raffaele, Tinelli Andrea, Tinelli Francesco G., Cicinelli Ettore, Malvasi Antonio. Gynecologic Oncology.2006;100(1). CrossRef
  24. Clinical outcome and risk factors for recurrence in borderline ovarian tumours Yokoyama Y, Moriya T, Takano T, Shoji T, Takahashi O, Nakahara K, Yamada H, Yaegashi N, Okamura K, Izutsu T, Sugiyama T, Tanaka T, Kurachi H, Sato A, Tase T, Mizunuma H. British Journal of Cancer.2006;94(11). CrossRef
  25. Borderline ovarian tumors: features and controversial aspects Messalli Enrico M., Grauso Flavio, Balbi Giancarlo, Napolitano Antonella, Seguino Elisabetta, Torella Marco. European Journal of Obstetrics & Gynecology and Reproductive Biology.2013;167(1). CrossRef
  26. Identification of factors that impact recurrence in patients with borderline ovarian tumors Chen Xi, Fang Chenyan, Zhu Tao, Zhang Ping, Yu Aijun, Wang Shihua. Journal of Ovarian Research.2017;10(1). CrossRef
  27. Borderline epithelial tumors of the ovary: Experience of 55 patients LOIZZI VERA, SELVAGGI LUIGI, LEONE LUCA, LATORRE DONATELLA, SCARDIGNO DORIANA, MAGAZZINO FRANCESCAPAOLA, CORMIO GENNARO. Oncology Letters.2014;9(2). CrossRef
  28. Clinical Significance of Microinvasion in Borderline Ovarian Tumors and Its Impact on Surgical Management Ferrero Annamaria, Strada Isabella, Di Marcoberardino Barbara, Maccarini Lucia Ricci, Pozzati Federica, Rossi Martina, Biglia Nicoletta, De Iaco Pierandrea. International Journal of Gynecologic Cancer.2012;22(7). CrossRef
  29. Microinvasion links ovarian serous borderline tumor and grade 1 invasive carcinoma Hogg Russell, Scurry James, Kim Soo-Nyung, Friedlander Michael, Hacker Neville. Gynecologic Oncology.2007;106(1). CrossRef
  30. What is the impact of stromal microinvasion on oncologic outcomes in borderline ovarian tumors? A multicenter case-control study Boyraz G, Salman MC, Gultekin M, Ozkan NT, Uckan HH, Gungorduk K, et al . Arch Gynecol Obstet.2017;296(5):979-987. CrossRef

Copyright

© Asian Pacific Journal of Cancer Care , 2021

Author Details

Phansenee Supreechaya
Affiliation not stated

Charuwan Tantipalakorn
Affiliation not stated

Tanarat Muangmool
Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand

Kittipat Charoenkwan
Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand

Prapaporn Suprasert
Chiang Mai University

Jatupol Srisomboon
Affiliation not stated
jatupol1957@hotmail.com

How to Cite

Supreechaya, P., Tantipalakorn, C., Muangmool, T., Charoenkwan, K., Suprasert, P., & Srisomboon, J. (2021). Survival Outcomes and Prognostic Factors of Borderline Ovarian Tumors. Asian Pacific Journal of Cancer Care, 6(3), 249-255. https://doi.org/10.31557/apjcc.2021.6.3.249-255
  • Abstract viewed - 3315 times
  • PDF (FULL TEXT) downloaded - 1306 times
  • XML downloaded - 3 times