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Introduction

Therapeutic methods for addressing physical and 
mental problems have made significant progress with 
the advancement of technology [1-13]. Technological 
advancements have significantly transformed the 
landscape of healthcare, particularly through the 
integration of artificial intelligence (AI), blockchain, and 
data-driven decision-making models. These innovations 
enhance efficiency in medical supply chains by improving 
transparency, security, and operational effectiveness, 
ultimately leading to better healthcare outcomes [14]. 
Additionally, AI and deep learning have played a crucial 
role in deciphering immune system complexities, allowing 
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for more precise immunotherapy applications, particularly 
in the treatment of autoimmune diseases [15]. Furthermore, 
emerging research suggests that existing pharmaceuticals, 
such as metformin, could have neuroprotective effects, 
as seen in mitigating microstructural changes in the 
white matter of Alzheimer’s patients [16]. The growing 
intersection of AI and healthcare also extends to the study 
of disease pathogenesis, where computational models 
are enhancing our understanding of T cell specificity 
and immune responses, paving the way for improved 
diagnostic and therapeutic approaches [17]. As these 
technologies continue to evolve, their integration into 
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clinical practice will not only optimize treatment strategies 
but also foster innovations that advance global healthcare 
accessibility and effectiveness [18]. With the advancement 
of technology, newer and more serious problems are clearly 
emerging [19]. Various diseases have threatened human 
life and can emerge as pandemics [20]. Many diseases only 
harm individuals’ physical bodies, but many others affect 
their mental and emotional well-being [21, 22]. Cancer 
is a complex disease that is increasing day by day [23]. 
Ovarian cancer remains one of the most aggressive and 
challenging gynecological malignancies, ranking as the 
fifth leading cause of cancer-related deaths among women 
worldwide [24]. Despite advances in diagnostic techniques 
and the development of treatment strategies, the overall 
prognosis for ovarian cancer patients is still poor, primarily 
due to late-stage diagnosis, resistance to chemotherapy, 
and the severe side effects associated with conventional 
treatment regimens [25-27]. Standard chemotherapy, 
typically involving agents such as paclitaxel and cisplatin, 
remains the cornerstone of treatment; however, the clinical 
effectiveness of these drugs is often compromised by 
several inherent challenges [28, 29]. Paclitaxel, a potent 
chemotherapeutic agent, is widely used in the treatment 
of ovarian cancer due to its ability to inhibit cancer 
cell division by stabilizing microtubules [30]. Despite 
its proven efficacy, paclitaxel suffers from significant 
drawbacks, including poor aqueous solubility, low 
bioavailability, and rapid systemic clearance, which 
contribute to its limited therapeutic window and the high 
incidence of severe side effects, such as neurotoxicity, 
myelosuppression, and cardiotoxicity [31, 32]. These 
limitations highlight the need for novel drug delivery 
systems that can improve the pharmacokinetic profile of 
paclitaxel, enhance its therapeutic index, and reduce the 
associated toxicity [33]. In recent years, nanotechnology 
has emerged as a promising approach to overcome the 
limitations of traditional drug delivery systems [34]. 
Among various nanocarriers, niosomes non-ionic 
surfactant-based vesicles have attracted significant 
attention due to their unique properties [35]. Niosomes are 
biocompatible, stable, and capable of encapsulating both 
hydrophilic and hydrophobic drugs, making them ideal 
candidates for delivering paclitaxel [36, 37]. Their ability 
to improve the solubility and bioavailability of paclitaxel, 
prolong its circulation time in the bloodstream, and target 
drug release to cancer cells offers a compelling strategy 
to enhance treatment efficacy while minimizing systemic 
toxicity [38, 39]. The formulation of paclitaxel-loaded 
niosomes has the potential to significantly improve the 
delivery and therapeutic action of paclitaxel in ovarian 
cancer treatment [40]. Niosomes can not only serve as 
an effective carrier for paclitaxel but also offer controlled 
drug release, which may reduce the frequency and severity 
of adverse effects [41]. Furthermore, their size, surface 
charge, and composition can be tailored to optimize their 
interaction with cancer cells, providing a more targeted 
and effective treatment strategy [42, 43]. This study aims 
to explore the therapeutic potential of paclitaxel-loaded 
niosomes in ovarian cancer treatment. Specifically, we 
investigate the physicochemical properties of the niosomal 

formulation, including particle size, zeta potential, and 
morphology, as well as its cytotoxicity against ovarian 
cancer cell lines (A2780S). Using the MTT assay, we 
will evaluate the effectiveness of paclitaxel-loaded 
niosomes at different time intervals (24 and 48 hours) 
and compare the results to free paclitaxel. We hypothesize 
that encapsulating paclitaxel in niosomes will enhance 
its cytotoxicity, improve its therapeutic efficacy, and 
reduce its side effects. Through this research, we aim to 
provide a deeper understanding of the potential benefits of 
paclitaxel-loaded niosomes as a novel therapeutic strategy 
for ovarian cancer. The findings from this study could 
pave the way for the clinical application of niosomal drug 
delivery systems, potentially transforming the treatment 
landscape for ovarian cancer patients by improving 
outcomes and reducing treatment-related toxicity.

Materials and Methods

Materials
All necessary reagents, including Paclitaxel, Span 

40, Cholesterol, Polyethylene Glycol 3350, RPMI 1640 
culture medium, Ethanol, Isopropanol, and Diethyl Ether, 
were meticulously acquired from the Sigma Corporation to 
ensure the highest quality standards for the experiments. 
Additionally, the A2780S ovarian cancer cell line utilized 
in this study was generously supplied by the Cell Bank 
affiliated with the Iranian Pasteur Institute, guaranteeing 
a reliable and consistent source of cellular material for 
our research purposes.”

Preparation of nanoparticles
Initially, a precise combination of 80 milligrams of 

Span 40, 30 milligrams of Cholesterol, and 25 milligrams 
of Polyethylene Glycol 3350 (a molar ratio of about 
25:10:1) was prepared in a solvent system consisting of 
40 milliliters of Diethyl Ether, ensuring proper dissolution 
of the components. To this mixture, two separate aliquots 
of Ethanol (96%), each containing 14 milligrams of 
Paclitaxel, were gradually introduced over time, with each 
addition carefully monitored to ensure uniform dispersion 
of the drug. Once all components were thoroughly mixed, 
the solution was subjected to a gentle agitation process for 
a duration of one hour at 37°C, maintaining a consistent 
speed of 300 rotations per minute to promote complete 
solubilization and homogenization of the ingredients. 
Once fully dissolved, the resulting solution was slowly 
poured into 14 ml of phosphate buffer (pH 7.2) that was 
preheated to 70°C and continuously stirred. Due to the 
temperature difference between the two phases, the ether 
quickly evaporated, leading to the formation of niosomes. 
To ensure the homogeneity and proper encapsulation of the 
active ingredient, the mixture was subsequently processed 
using a sonicator at room temperature for five minutes, 
providing sufficient energy to produce uniform vesicles.

 
Determination of size of nanoniosomes

To determine the mean diameter of nanoniosomes, 
a formulation was prepared using a 1:50 nanoniosome-
to-PBS ratio at pH 7.2. Nanoparticle concentration was 
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morphology of the niosomes, demonstrating uniform and 
consistent structural characteristics (Figure 1).

In vitro cytotoxicity assay
The cytotoxicity of paclitaxel-loaded niosomes was 

evaluated in comparison to conventional paclitaxel using 
A2780S ovarian cancer cells. Cells were incubated with 
equivalent doses of either the niosomal formulation 
or the free drug for 24 and 48 hours at 37°C. Figure 2 
illustrates the dose-response curves for both formulations, 
highlighting the lower IC₅₀ values achieved by the 
niosomal paclitaxel at each incubation period. Specifically, 
the IC₅₀ for the niosomal formulation decreased from 
100 µM at 24 hours to 65 µM at 48 hours, whereas the 
free paclitaxel maintained higher IC₅₀ values of 140 
µM and 130 µM at the respective time points. These 
results demonstrate that encapsulating paclitaxel within 
niosomes significantly enhances its cytotoxicity against 
A2780S cells, potentially due to improved cellular uptake 
and sustained drug release. The increased efficacy of 
the niosomal formulation over conventional paclitaxel 
underscores its potential as a more effective therapeutic 
strategy for ovarian cancer treatment (Table 2).

Discussion

The use of niosomes as drug carriers in cancer 
treatment represents an innovative advancement in 
nanotechnology. These non-ionic surfactant-based vesicles 
can encapsulate both hydrophilic and lipophilic drugs, 
enhancing treatment efficacy by improving targeting 
precision while reducing side effects. For example, a study 
by Nowroozi et al. (2018) demonstrated that theranostic 
niosomes containing doxorubicin and Ag2S quantum 
dots, when directly injected into tumors, significantly 
increased drug accumulation in the tumor and inhibited 
tumor growth by 71.7%. This method highlighted the 
high efficacy of direct intratumoral injection in breast 
cancer models [44]. Additionally, Akbarzadeh et al. 
(2021) developed niosomes loaded with curcumin for 
breast cancer treatment. These niosomes significantly 
increased cell death and apoptosis in MDA-MB231 
and SKBR3 cancer cell lines, effectively delivering 
hydrophobic drugs to target cells while minimizing 
side effects. This innovative formulation highlights 
the potential of niosomes in enhancing the efficacy of 
cancer therapies [45]. Due to their high stability and 
ability to target specific cells, niosomes are recognized 
as a powerful tool in delivering anticancer drugs, offering 
significant improvements to current treatments. This 
study investigates the improved therapeutic efficacy of 
paclitaxel-loaded niosomes in an ovarian cancer cell line 
(A2780S), highlighting the potential benefits of niosome 
encapsulation in enhancing drug delivery and cytotoxic 
effects. The results demonstrate that the niosomal 
formulation of paclitaxel significantly reduces IC₅₀ values 
at both 24 and 48 hours when compared to the free drug, 
indicating enhanced cytotoxicity against ovarian cancer 
cells. This improvement in drug efficacy suggests that 
niosomes enhance drug solubility, stability, and cellular 

measured by absorbance at 633 nm, while size and surface 
charge were analyzed with a Malvern Nano ZS3600 
zetasizer. Morphology was examined using a Philips 
XL30 SEM. For SEM analysis, 200 µL nanoparticle 
suspensions were centrifuged at 13,000 RPM for 30 
minutes at 4°C to obtain pellets. These pellets were 
resuspended in 200 µL of 15 mg/mL sucrose as a 
cryoprotectant, lyophilized, coated with a thin gold layer, 
and then imaged with the SEM.

MTT test
The cytotoxicity of the Paclitaxel formulation was 

evaluated using the MTT assay and compared to the 
standard drug. A2780S cells were seeded in a 96-well 
plate and cultured for 24 hours before being treated with 
varying concentrations of either the drug formulation 
or free drug for 24 and 48 hours. After treatment, MTT 
solution was added and incubated for one hour, then 
replaced with isopropanol to dissolve the formazan 
crystals. Absorbance was measured at 540 nm using an 
ELISA reader. Cytotoxicity (%) was calculated as:

Cytotoxicity (%) = [1 - (Absorbance of treated cells / 
Absorbance of control)] × 100

Cell viability was determined as 100 minus the 
cytotoxicity percentage. The IC₅₀ value was calculated 
using the Pharm program.

Statistical analysis
The data were statistically analyzed using SPSS 

version 11, and all phases of toxicity were evaluated with 
Pharm software.

Results

Characterization of nanoparticles
Paclitaxel-loaded niosomes were characterized 

to determine their physicochemical properties. The 
formulations exhibited a mean particle size of 285 nm 
and a polydispersity index (PDI) of 0.440, indicating a 
moderately broad size distribution. The zeta potential 
was measured at -21 mV, suggesting sufficient colloidal 
stability (Table 1). Additionally, scanning electron 
microscopy (SEM) images confirmed the spherical 

Table 1. Characterization of Nanoparticles
Parameter Value Unit
Mean Particle Size 285±14 nm
Polydispersity Index (PDI) 0.44±0.9 -
Zeta Potential -21±1.8 mV

Figure 1. Scanning Electron Microscopy (SEM) of 
Nanoparticles.
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uptake, allowing for more efficient drug delivery directly to 
cancer cells [46, 47]. Consequently, niosomes may reduce 
the required dosage of paclitaxel, potentially lowering 
systemic toxicity. The niosomes’ mean size of 285 nm 
and negative zeta potential indicate good stability and 
suitability for biological interactions, while the moderately 
broad PDI suggests a relatively uniform size distribution, 
essential for consistent drug delivery and bioavailability 
[48-51]. The spherical morphology observed in SEM 
further supports the effective encapsulation and expected 
cellular uptake behaviors. This study positions niosomes 
as a promising nanocarrier for paclitaxel, particularly due 
to their ability to address the drug’s poor water solubility 
and severe side effects. By enhancing drug delivery 
and therapeutic outcomes, niosomes may reduce the 
limitations of traditional formulations that often require 
higher doses, increasing the risk of adverse side effects. 
Although this study provides essential insights, further 
research, particularly in vivo studies, is needed to assess 
the pharmacokinetics, biodistribution, and long-term 
safety of niosomal paclitaxel. Moreover, understanding 
the molecular mechanisms underlying the enhanced 
drug uptake and efficacy of niosomes could provide 
a deeper understanding of their therapeutic potential. 
Ultimately, the promising findings from this study suggest 
that niosomal paclitaxel could offer a safer and more 
effective alternative for ovarian cancer treatment, with 
future clinical trials critical to validating these results and 
establishing niosomal paclitaxel as a standard treatment 
option.

In conclusion, Humanity, through technological 
advancements, has consistently contributed to combating 
a wide range of diseases [52-62]. For example, the use of 
paper-based sensors for detecting cancer markers offers 
rapid, cost-effective, and accurate diagnostic methods that 

could play a crucial role in enhancing health outcomes 
and treatment efficacy [63]. Cancer is a complex, 
multifactorial disease characterized by the uncontrolled 
proliferation of malignant cells that can invade healthy 
tissues and disrupt the normal function of various organs 
[64-69]. Recent studies employing advanced analytical 
techniques such as hybrid metaheuristic machine learning 
for obesity risk prediction [70], finite mixture modeling 
for investigating health risk behavior disparities [71], 
and cardiac marker evaluation as predictors of mortality 
in methanol toxicity [72] underscore the critical role of 
data-driven approaches in enhancing our understanding 
of complex health determinants and improving public 
health outcomes. This study underscores the potential 
of niosomal encapsulation to significantly enhance the 
therapeutic efficacy of paclitaxel, presenting a viable 
advancement in the treatment of ovarian cancer. The 
improved delivery and increased cytotoxicity observed in 
vitro lay a strong foundation for further development and 
clinical investigation of niosomal drug delivery systems.
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