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Introduction

The human body comprises trillions of cells, and the 
chance of occurrence of cancer in any part of it is fairly 
significant. Non-communicable diseases (NCDs) are now 
a major cause of global deaths, and cancer is expected to 
top the ranked list of leading causes of deaths in every 
country [1]. Cancer incidences and mortality are rapidly 
growing worldwide [2]. As per the report of the World 
Health Organization (WHO) in 2015, cancer is one of the 
topmost ranking causes of death before the age group of 
70-75 years in 91 countries out of 172 and holds the third 
or possibly fourth position in 22 other countries. 

One of the major factors that play a vital role in 
tackling cancer is its early detection and prompt diagnosis. 
There are different imaging techniques available for cancer 
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screening and diagnosis among which the investigative 
methods that top the list are mammography, ultrasound, 
and thermography. Mammography is one of the most 
important early diagnostic methods for breast cancer 
but it is not very successful for dense breasts. For this 
reason, ultrasound or diagnostic sonographic techniques 
are recommended [3]. In recent years, technological 
advancement in medical imaging as well as the discovery 
of minimally invasive biomarkers have shown possibilities 
of curbing such challenges across a wide spectrum 
including detection of cancer, therapeutics and monitoring 
techniques. However, one of the major challenges lies 
in the interpretation of the large volume of data being 
generated by such advancements.
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Over the past few years, Machine Learning’s (ML’s) 
potential in precision oncology has become more apparent.    
The application of deep learning (DL), a broader part 
of ML, in wide array of aspects including diagnosis, 
prognostic determination, and prediction tasks have been 
reported [4-7]. DL has shown an impressive performance 
in the classification of image data in varied clinical fields. 
Advances in DL has greatly improved its efficiency and 
precision in oncology. Few examples would include 
detecting and classifying skin lesions, the identifying 
and categorizing of lung cancers, detecting breast cancer 
metastases and the like. All these DL techniques on images 
primarily employ convolutional neural networks (CNNs)
[8-11]. Different Machine learning approaches have been 
utilized in the field of oncology. These include analysis of 
datasets from varied sources using both supervised and 
unsupervised learning [12-13].

Concepts of Artificial Intelligence, Machine Learning and 
Deep Learning

Artificial intelligence (AI), and its enhancing 
mathematical systems for estimation and classification, is 
one of the fields of computer science that was conceived 
around the beginning of the 1940s. AI is primarily centered 
on mathematical models that mimic the functioning of 
the human brain. ML is a branch of AI where a system 
learns from large amounts of data samples and provide the 
conclusive result for classification and regression [14-16].
As the size of the data set increases learning improves, 
and it becomes possible via ML to estimate unknowns and 
to predict outputs. As formally defined by Tom Mitchell: 
“A computer program is said to learn from experience E 
with respect to some class of tasks T and performance 
measure P, if its performance at tasks in T, as measured 
by P, improves with experience E” [17]. ML has been 
seen as the new field of research for biomedical studies 
and provides a variety of applications in various sub-
domains like cancer detection and monitoring [18]. ML 
algorithms are completely dynamic in nature and always 
try to improve as more data are added to the dataset. 
Mostly ML algorithms are represented as mathematical 
models, where data samples map to observed variables 
termed as features, and as variables outcome termed as 
labels [14-19]. The optimization of algorithms through a 
particular process termed as training employs the training 
set  (of available data from previous measurements) and as 
output, it predicts the labels by extracting and analyzing 
the exact features, even with newly added data samples. 

Classification of Machine Learning Techniques
ML techniques can be classified based on label 

type and feature type. Label type techniques are mostly 
categorized into three: (i) supervised, (ii) unsupervised, 
and, (iii) reinforcement learning. Based on the type of 
features the classification is mostly as (i) handcrafted, and; 
(ii) non-handcrafted feature-based techniques.

Supervised Learning: Supervised learning applies to 
exact data sets that are labeled by working researchers 
of their particular research areas and by industry 
professionals. Feature engineering algorithms are used 

to train and reduce the quantified prediction error rates, 
that is, the difference between the predicted labels and 
the known labels. In general, types of algorithms that 
are employed are: linear and logistic regression, Naive 
Baye’s classification [19], support vector machines 
(SVMs) [14], and random forests [20]. The histopathology 
based classification, for example, is one of the supervised 
learning applications where pathological images are 
labeled by the expert for cancer versus non-cancer and 
for different Gleason grades [21-23].

Unsupervised Learning
Unsupervised learning applies to datasets where the 

algorithm separates into different classes,  depending on 
the input features and training data,  which is not explicitly 
labeled. In general, types of algorithms employed include 
k-means clustering [19] which involves finding groups or 
clusters of provided data, principal component analysis 
(PCA) [24], and, autoencoders [25]. The unsupervised 
learning-based algorithms are applied to recognize 
patterns of immunohistochemical staining when stained 
for histone modifications in tissue samples. The study 
inferred that different patterns lead to variations in the 
amount of risk of the repetitiveness of cancer and it is 
almost independent of applying tumor stage or PSA type 
of clinical parameters [26].

Reinforcement Learning
Reinforcement learning is applied to datasets where 

the algorithm and its function are conclusive. The 
reinforcement algorithm invokes an assistant that acts to 
predict the features for further prospective steps. It always 
depends on the present and past features of datasets. The 
assistant ultimately learns from selecting the individual 
and takes action at each stage to maximize the expectation.

Feature-Based ML Techniques 
These techniques utilize handcrafted and non-

handcrafted features for ML. Handcrafted-feature based 
implementation is associated with the derivation of 
infinite numbers of exact features. As mentioned earlier, 
these features are provided by biomedical experts who 
are looking for them in their diagnostic or decision 
process. Selective features are mostly based on subject 
matter experts who possess a vast knowledge of the 
corresponding topic. Dataset designed confine to various 
features captured from glands and tarnish histopathology 
slide’s nuclei per unit area feature and its corresponding 
shape and statistical properties. ML techniques associated 
with preprocessing step calibrates proper algorithms 
like edge or object detection for image processing are 
employed [27]. Non-handcrafted feature-based techniques 
associate the derivation of the raw data for learning. The 
algorithm learns and adapts to extract its features even 
without exact labeling and tries to minimize the prediction 
error. These methods scale with data, that is, as  larger data 
sets are used for training, their performance improves and 
the resulting features may not necessarily be interpretative 
by humans [5-25-28].

The generated large amount of clinical laboratory 
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mathematical concepts that are generally used in ANN 
system. Researcher have shown that biomedical systems 
mostly represent nonlinear systems, thereby making ANNs 
a valuable computing tool for research in the field of 
biology. AI is being applied to various aspects of cancer 
for few decades [30]. With the ongoing research, the 
use of computational methods have only become more 
effective than before.

AI Applications in Cancer Imaging
AI-based deep learning algorithms have been 

implemented to identify complex patterns in medical 
and clinical images. They attempt to translate images 
and complement clinical decisions, thereby enabling 
meaningful decisions that are most times hard for humans. 
AI enhances the gathering of various data streams into 
dynamically integrated symptomatic systems. These 
include radiographic images studied in pathology, 
genomics and capturing electronic health reports, and 
social networks. The study of cross-sectional radiographic 
images reproduced by MRI and CT scanning is always 
challenging in recognizing complicated patterns. 
Whereas computers can potentially be trained efficiently 
to get results that can be produced rapidly. ML can be 
implemented for MRI datasets or digitally captured 
images. Figure 2 describes cancer detection phases for 
image processing. Low-level transformation methods 
are used to implement classification of images that are 
the initial stage of image analysis like segmentation 
and registration, and are mathematical formulated using 
statistical and biomechanical modeling and targeted 
to solve computer vision-based image processing. 
Higher-level transformation-based tasks have provided 
relevant info corresponding to prostate cancer detection, 
characterization, and grading. Cancer imaging based on AI 
implementation provides great applicability and flexibility 
and enhances three major biomedical works like sensing, 
classification, and treatment monitoring of tumors. 

Computer-aided detection (CADe) is a term used for 
detection associated with finding objects in radiographs. 

reports and medical data are generally in the form of text, 
which is not properly structured, and is incomprehensible 
for the computer program, whereas image EP (expand 
EP) and genetic data are mostly logical to the machine 
so that the ML algorithms are easily implemented 
once it uses preprocessed data. The implementation of 
ML methodologies to data samples establish the basic 
segments. Captured data may subject an issue related 
to the quality of the data and after completing the pre-
processing implementation of ML algorithms become 
more suitable. These biomedical captured data possibly 
have outliers, missing data, and noise due to duplicate 
data that degrade data quality. ML algorithms and their 
performance and analysis improve by improving data 
quality.

Figure 1 represents a summary of the work-flow of a 
biomedical imaging system that implements a machine 
learning and deep learning methodology. Study shows that 
different techniques are available for data preprocessing 
that focus on modifying the data for better fitting in a 
specific ML method [16]. Technique implemented for data 
preprocessing includes feature selection, dimensionality 
reduction, and feature extraction. Dimensionality 
reduction improves preprocessing and implements when 
the number of features in the datasets present, the output 
results of ML algorithms perform better and significant 
performance improvement can be obtained when the 
dimensionality is lower [29]. Feature extraction comprises 
selecting a subset of all features that are sufficient to 
capture a significant amount of relevant information in 
a dataset. 

Deep Learning
Deep learning is a branch of machine learning 

that primarily deals with algorithms derived from the 
functioning and structure of human brains- Artificial 
neural networks. ANN (Artificial neural network) 
generated a diversity of classification or pattern 
recognition problem-solving scenarios. Numerous 
hidden layers produce neural connections based on 

Figure 1. Radiomic Workflow for Machine Learning & Deep Learning Approach for Biomedical Imaging 



192 Asian Pacific Journal of Cancer Biology• Vol 5• Issue 4

apjcb.waocp.com                                                                                              Shankargouda Patil, et al: Artificial Intelligence and Cancer

CADe has been used for companion assistant in 
recognizing hidden cancers in cases of low-quantity CT 
screening [31] and identifying brain tumor progression 
in MRI images with tremendous sensitivity during 
detection [32]. CADe have also aided in mammography 
right from spotting micro-calcification clusters to the 
indexing of the initial stage of breast cancer lump 
[33]. Recent studies have proved CADe to be efficient 
reducing some of the diagnostic constraints like inter-rater 
bias, irregular regenerative reports by biomedical 
professionals, time utilization as well as labor [34-35]. 
Application-based on AI adds high efficiency in the 
recreation of the nature of tumor productively with 
automated segmentation.  Images of the entire body can 
potentially be interpreted by AI algorithms to perform 
tasks of segmentation. Its performance can be enhanced 
in the identification of organ structures which is mostly 
not detected by most personnel except for a pathological 
expert. The radiologic data are being used to train AI in 
the diagnosis of skeptical lesions and classify them as 
benign or malignant. Recent research works are mainly 
working on tumor extension and multi-nodality in breast 

MRI [36]. The newly computerized lesion depends on 
the volume-based analysis tools in contrast-upgraded 
magnetic resonance mammography (MRM) [37]. The 
advancement of genomics study from a data outlook 
maintains collaborative scope by adding AI-based 
imaging endeavor [38].

World Health Organization (WHO) and Response 
Evaluation Criteria in Solid Tumors (RECIST) principally 
work to identify difficulties in conventional physical 
tracking of tumors and resolve them. Various biomarkers 
are also being studied and implemented for cancer 
treatment in addition to their use as an alternative 
for continuous tracking of cancer. Investigation of 
circulating tumor DNA (ctDNA) discharged from 
tumor cells contributes toward the recent and dynamic 
state of art of work in the field of cancer and enhances 
tracking of disease evolution [39-42]. AI implemented 
unified treatment connecting molecular and pathological 
information with image-based searching that could aid 
in decision making. The various fields where AI can be 
implemented in cancer research are listed in Table 1.

Applications of AI in Lung Cancer 
Biomedical imaging and ML provided a new 

dimension to research. The initial stage of lung cancer 
detection is always important. ML added new features 
and possibilities to enhance lung cancer diagnosis and 
tracking treatment response. Various models are being 
designed to propagate the initial stage of detection and 
enable AI to meaningfully categorize lung nodules into 
two classes namely benign or malignant [43-45].

The National Lung Screening Trial (NLST) exhibited 
a 20% decrement in mortality rate in lung cancers in 
recent and old smokers obscurely with the use of low-dose 
CT (LDCT) for screening [46]. NLST exhibits a list of 
constraints that confide to distinguish the initial stages 
of lung cancer which can potentially be solved by the 
computational approach [46-49]. Till-date, there are no 
authenticated and verified approach setups to categorize 
whether nodules are malignant or benign. Classical 
biostatistics and ML methodology implement to discuss 
various obstruction in lung cancer screening. ML has 
shown multiple possibilities and newer techniques to 
recognize biomarkers to minimize imaging false-positive 
outcomes and more precisely categorize benign and 

Table 1. AI Implementation in Cancer
Sl No. Fields where AI can be implemented
1 Prediction of cancer in its early stages by analyzing CT scan images [100]
2 Identification of cancer during screening [45]
3 Differentiate lesions that are indolent versus aggressive lesion [101]
4 Differentiate benign and malignant lesions in medical images [63]
5 Evaluation of both clinical and molecular characterization  of tumors via radiomics [102]
6 Prediction of mutational status in tumors via radiomics [54]
7 Identify prognostic phenotype of a tumor [103]
8 Predict clinical outcome in patients treated with immunotherapy [104]
9 Aid in subtype classification of tumors [70]
10 Predict recurrence-free survival rate [105]

Figure 2. Cancer Detection Stages by Image Processing 
Methodology
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malignant nodules. The majority of inclusive pulmonary 
nodules are unexpectedly detected posing a problem to 
cancer victims [50]. In a recent study, four quantitatively 
scored semantic features such as short-axis radius, contour, 
concavity, and texture were considered in an ML model 
to classify benign or malignant nodules in the lung cancer 
screening setting. The model classified the nodules with 
an accuracy of 74.3% [44].

Image-based biomarkers can be stored in the radiographs 
and featured into the elemental pathophysiology of a 
tumor. Clinical and biomedical implementation depends 
on size-based measurement and gives an appropriate 
estimation on prognostic factors such as survival and 
recurrence rates [51-54]. AI methods are being explored to 
quantify phenotypic characteristics of radiographic images 
based on the presence of specific mutations employing 
predefined algorithms and deep learning (a process termed 
as radiomics) [54]. Research works numerous cancer 
types like lung cancer have provided results with P less 
than 3.53 × 10−6 [54]. 

Applications of AI in Breast Cancer 
A statistical report says, among the various cancers, 

breast cancer is the most frequently diagnosed cancer 
[55]. Breast cancer can be classified as a heterogeneous 
disease wherein there is a wide variation with respect to 
the size of tumors, prognosis, etiology as well as response 
to treatment. Recent advances in imaging, as well as 
computer systems, have resulted in a rapid rise in the 
potential use of AI for numerous amounts of tasks in the 
field of breast imaging. These AI applications are mostly 
applied for diagnosis and prediction treatment response 
and prognosis [56-57- 66-71-58-65].

Breast cancer screening is done using an imaging 
technique called CADe and CADx. Study shows a 
large amount of work has been done in this field in 
the last decades [71-73]. CADe is mostly applied to 
distinguish mammography translation and it has been 
part of regular biomedical applications since 1990 
[72-73]. Various challenges present in the detection of 
cancer by radiologists include complex noise (incomplete 
visual search patterns, camouflaging normal anatomic 
background), fatigue, the estimation of the indirect 
complicated state of diseases, a huge number of image data 
and the quality of the image. CADe based implementation 
remains as a continuing research field in mammography 
to automatize the identification of breast lesions based 
on MRI, 3D ultrasound and tomosynthesis images by 
consolidating already defined algorithms and deep 
learning methodology [74-77]. CNN’s model is applied 
for the identification of mammograms [56] and studies 
show deep learning methodology [59] to provide great 
flexibility on CAD of breast lesions in ultrasound, MRI, 
and mammography [74-77].

Computer vision-based deep learning algorithms have 
frequently been applied in the past few years to identify the 
volume/density dimension in breast images and identify 
parenchyma arrangement, significant biomarkers for 
cancer risk estimation and finally to illustrate the treatment 
management. As the density of images goes high, it raises 

risk factors for breast cancer which could have an obscure 
effect in the identification of those lesions. Volumetric-
based estimation of density are more likely applied [78-80]. 
In full-field digital mammography (FFDM), tissues are 
categorized into different classes based on differences in 
x-ray signal attenuation of fibroglandular and fat tissues. 
The other feature is variability in parenchymal patterns 
depending upon the spatial distribution of dense tissue 
which are image-based risk factors. Deep learning-based 
Texture looks into BRCA1/BRCA2 gene mutations and 
parenchymal patterns analyze the risk of breast cancer 
and chances of occurrence. Results achieved an AUC of 
relatively around 0.82 [71-81-82].

In recent years, biomarkers have improved and 
provided benefits along with the combination of 
information from detailed patient reports and datasets like 
biological cellular imaging and genomic data captured 
during symptomatic tasks and consecutive surgery. NCI’s 
TCGA Breast Phenotype Group collected interdisciplinary 
analysts for phenotypically investigating substantial breast 
tumors to achieve image-based information for molecular 
characteristics as well as gene expression profiles [83-
85].The MRI-genomic cooperative is being explored 
to the new dimension and provides a good generous 
genetic structure that standardizes the evolution of tumor 
phenotypes [66-83]. 

Research society has been actively working from 
the 1980s to promote ML techniques for CADx. The 
purpose is to perform the work of classifying benign 
and malignant breast lesions [73]. CADx with AI 
implemented computerized tumor classification and basic 
level representation as done by a radiologist expert. The 
AI-based software system can be used to characterize 
the skeptical lesion, predict prognosis of cancer and 
also provide a patient tracking system to the specialist. 
AI-based software systems are being extensively used 
in breast cancer and captured image data are being 
successfully classified based on tumor size, kinetics, 
texture, shape and morphology [86].

Application of AI in CNS Tumor 
CNS tumors occurrence present itself with a large 

spectrum in the field of pathology and are possibly more 
diverse with respect to any other tumors in the human 
body. This wide range of diagnoses demands a very unique 
and accurate estimation of imaging modalities. One of 
the most important biomarkers that aid in determining 
the prognosis in CNS tumors is Isocitrate Dehydrogenase 
(IDH). The changes in the presence of IDH mutation 
can be effectively recognized using machine learning 
methods including deep CNNs trained on conventional 
MR images [87-88]. Technically similar kind of work 
has been already done on other brain tumors. The study 
results demonstrated that algorithms trained to extract 
radiomics features from conventional MRI can generate 
predictive models for pituitary adenoma subtypes and 
pediatric brain tumors. Various challenges arise when 
distinguishing between different tumor types. One of the 
major challenges faced in the diagnosis of CNS tumors 
is differentiating between primary CNS lymphoma and 
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glioblastoma due to their similarity in imaging phenotypes. 
Results have shown radiomics models using image 
texture-based features to boost the differences between 
glioblastoma and primary CNS lymphoma [87-89]. 
Interestingly, a similar diagnostic dilemma often arises 
when evaluating histopathology slides of these same 
two different disease processes [90]. Recent research 
implemented AI in brain tumors focusing on efficiently 
categorizing biological and histopathologic subclass of 
brain tumors [87-91]. AI-based system demanding new 
models to accurately classify tumors requires dataset 
testing and training of a large number of corresponding 
data. Thereby AI would aid in providing better treatment 
quality with increasing accuracy of discrimination among 
multiple tumors [92].

Treatment of tumors is decided upon by the accurate 
classification of tumor subclasses. MR imaging is very 
useful in the process of defining CNS neoplasms. These 
tumors may reveal with different classes of contrast 
improvement and possibly be linked with hemorrhage and 
peritumoral edema or may blur in the limit from adjacent 
bone, blood vessels, fat, or surgical packing materials. 
The automatic identification of CNS tumors is expected 
to develop strong density-based algorithms to describe 
tumor as well as link them with the microenvironment 
that play a major role. Recent studies and methodologies 
implemented on automatic and semiautomatic detection of 
CNS tumors majorly applied to conventional MR imaging, 
ultrasound and PET images [93]. Research has been 
conducted where models are being created for applications 
such as treatment planning stereotactic radiosurgery [94], 
volume-based detection of residual tumor after surgery 
and tracking tumor growth over time [93]. Algorithms 
that automatically detect a tumor in the evaluation of 
patients having numerous intracranial lesions could be of 
great advantage to monitor metastases, growth rate and 
response to treatment over time. In the case of lesions in 
the skull- base that are mostly irregularly shaped extending 
across extracranial and intracranial compartments, 
AI could help in automatic volumetric

reconstruction and detecting sensitive variations in 
growth which are often missed out by a normal observer. 
Spatial classification of heterogeneous tissues present in 
both tumor lesions and treatment-related changes remains 
to be a challenge. However, via the machine-learning 
approach, we can combine multiple imaging features 
thereby improve the ability to create a tissue classifier that 
would not only be accurate but also takes the heterogeneity 
of treated tumors into account. One of the examples 
include differentiating radionecrosis from recurrent brain 
tumors using conventional

MRI based Texture features extraction [95-96]. MRI 
sequences based on susceptibility-weighted and perfusion-
weighted can also be integrated to differentiate between 
recurrence and radionecrosis in patients with high-grade 
gliomas

Another area where ML is being explored in the 
discovering of image biomarkers. The research on image 
biomarkers concentrates on finding associations between 
radiological features and histologic features. One such 

example includes the use of supervised machine learning 
in predicting the status of MGMT (methylation of the 
O(6)-methylguanine methyltransferase) in preoperative 
glioblastoma multiforme tumors, where the model 
exhibited a maximum area under the receiver-operating 
characteristic (ROC) curve of 0.85 (95% CI: 0.78-
0.91). Radiomic based system is also being designed 
by implementing traditional and diffusion MR imaging 
characteristics to identify the life span of survivors [97].

  
Applications of AI in Prostate Cancer 

The clinical non-uniformity of prostate cancer with 
reference to tumor size (very less to extremely destructive 
tumors), high recurrence and varying mortality rate from 
patient to patient poses a lot of challenges in itself. An 
ML-based supervised technique is frequently applied 
to imaging modalities like US imaging to find skeptical 
lesions and provide full extent biological advantage in 
cancer studies. Deep learning-based application in prostate 
cancer would be beneficial for treatment and generating 
high-performance results. 

Multi-parametric magnetic resonance imaging 
(mpMRI) are capable of portraying soft-tissue contrast for 
the identification of doubtful prostate lesions and provide 
insight into tissue properties. Study shows mpMRI is a 
promising imaging technique for prostate cancer due to 
its potential to find lesions and provide surgical features. 
Identification and classification of prostate tumors based 
on AI models provided flexibility with the advancement 
in CADe and CADx systems [98]. In partnership with 
PI-RADS, CAD systems could possibly improve the 
feasibility and treatment accuracy of mpMRI [99]. 
Initial work on mpMRI based CADx systems targeted 
on supervised learning model, adding feature extraction 
and trivial classification. The report stated that feature 
extraction plays a major role in enhancing system 
outcomes depending upon CAD. CNN’s added the full 
extension of work and convey good performance report 
in prostate cancer identification and treatment. A different 
feature of CNN algorithms such as an auto windowing 
are added for better MRI image classification and 
normalization with the addition of mpMRI images [99].

Limitations and Future prospects of AI in cancer
AI is continuing to prove its potential and efficacy 

in various stages of disease confronting such as early 
detection, treatment planning and prediction of future 
outcomes. Despite the increased advancements being 
made in AI and its applications in oncology, there are 
numerous limitations and setbacks that needs to be 
addressed. Few of them include issues with data access, 
generalizability, developing real-world applications, 
interpretation issues, ‘black box’ problem, and challenges 
pertaining to education and expertise in the field. Although 
various literature evidences have proved AI to be efficient 
in diagnosing and outcome prediction of various cancers, 
the generalizability of the said AI application needs to 
be validated, as most studies would be confined to a 
particular disease type in a specific population, with data 
being obtained from a particular institution/repository. 
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Efforts needs to be made in terms of promoting medical 
data sharing among institutes and carrying out multiple 
external validations. Numerous attempts are being carried 
out in developing real world applications, however, AI 
training is a data-hungry method requiring a multi-faceted 
approach from all the institutions worldwide. Apart from 
data draughts arising from patient privacy issues and 
dearth of data-sharing facilities in institutions, obtaining 
a complete data with the required quality is yet another 
obstacle. Training of AI in diagnosing or prediction of a 
specific disease with proper data from various populations 
would strengthen the AI’s ability to perform with accuracy, 
irrespective of where the application would be used. 

One of the other major challenges that’s being 
currently faced while using AI in medical domain, is 
trying to interpret as to how AI model came up with 
the solution. This limitation in the ability to precisely 
understand the logic behind these algorithms is termed 
as the “black box” problem. Various methods such as 
saliency maps, sensitivity analysis, feature visualization 
and class activation mapping are being utilized to tackle 
these issues. Further research is needed to decode and 
extract human understandable explanations from these AI 
algorithms. These explanations may pave way to develop 
newer and more efficient methods to understanding disease 
process, diagnosis and prediction of cancer. 

In conclusions, the increasing incidence and mortality 
of cancer necessitate the need for more medical and 
technological advancements which would aid in early 
detection and better treatment. Advancements in Machine 
learning and artificial intelligence have reached a point 
where they are being incorporated in most of the fields in 
science including medicine. On the basis of wide research 
being done, AI is proving itself to be a very reliable adjunct 
to medical professionals and promises to significantly 
improve detection and therapeutic methods. However, 
more interdisciplinary research is required to generalize 
the clinical application of AI, machine learning and deep 
learning in all cancer types as well as in different fields of 
oncology. Such research should also aim at overcoming the 
challenges being faced and collectively aid in benefiting 
the patients and enhance better clinical outcomes.
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