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Introduction

Chronic myeloid leukemia (CML) is a hematopoietic 
stem cell disorder of myeloid precursors, characterized 
by the presence of Philadelphia (Ph) chromosome, 
which results from a reciprocal chromosomal 
translocation t (9;22), leading to the BCR-ABL1 fusion 
gene. The BCR-ABL1 gene can modulate DNA repair 
mechanisms, cell cycle checkpoints, Bcl2 proteins and 
enhances reactive oxygen species (ROS) generation, 
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which may contribute to genomic instability and resistance 
towards tyrosine kinase inhibitor (TKI) treatment [1-3].

The intrinsic regulation of ROS is one of the 
mechanisms associated with multidrug resistance and 
maintenance of cancer stemness [4-5]. Previous studies 
have demonstrated that oxidative DNA damage induced 
by higher levels of ROS has been associated with initiation 
and progression of solid tumors and hematological 
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malignancies [6-9]. Antioxidant enzymes such as catalase 
(CAT), manganese superoxide dismutase (MnSOD), 
glutathione peroxidase 1 (GPX1), myeloperoxidase 
(MPO) and glutathione-S-transferases (GSTs) balance 
ROS levels and defend cells against oxidative 
stress. Most of these antioxidant enzymes are highly 
polymorphic. Genetic variations of these antioxidant 
enzymes with altered enzymatic activity may contribute 
to the imbalance of ROS production and scavenging 
[10-11]. The activity of several antioxidant enzymes was 
noted to be reduced in CML patients [12]. Several studies 
demonstrated that polymorphisms in antioxidant enzymes 
(CAT, MnSOD, GPX1, MPO & GSTs) might be associated 
with susceptibility to various solid tumors [13-15] and 
hematological malignancies [16-20].

Hence, the present study aimed to investigate 
the possible role of polymorphisms in antioxidant 
enzyme polymorphisms: Catalase (CAT) -21A/T & 
-262C/T, Glutathione peroxidase 1 (GPX1) -198C/
T, Myeloperoxidase (MPO) -463G/A, deletion of 
Glutathione S-Transferase M1 & T1 (GSTM1 & GSTT1) 
with susceptibility to chronic myeloid leukemia and their 
association with TKI (imatinib) response.

Materials and Methods

The present study included 325 samples, out of which 
125 are from CML patients and 200 were from age & 
gender matched controls without a family history of 
any cancer. The inclusion criteria for patients included 
Ph+ve CML cases with confirmed diagnosis, on TKI 
treatment and TKI refractory cases regardless of age, 
gender or race. The study was approved by the institutional 
ethics committee and an informed consent was obtained 
from patients participating in the study. Blood samples 
(6mL in EDTA vaccutainer) were collected from both 
CML patients and controls. Genomic DNA was extracted 
from blood samples using non-enzymatic rapid salting-out 
method. The purity & concentration of DNA samples 
were checked on Nanodrop1000 and further these DNA 
samples were subjected for analysis of SNPs in antioxidant 
enzyme genes.

Genotyping of antioxidant gene SNPs
Genotyping of CAT -21A/T (rs7943316), CAT -262C/T 

(rs1001179), GPX1 (-198C/T rs1050450) and MPO 
(-463G/A rs2333227) was performed by PCR-RFLP 
(polymerase chain reaction - restriction fragment length 
polymorphism) method. The null/deletion polymorphism 
in GSTM1 & GSTT1 genes (rs366631 & rs17856199) 
were performed by multiplex polymerase chain reaction 
followed by agarose gel electrophoresis. The primers used 
for amplification and restriction enzymes for RFLP analysis 
are listed in Table 1. The CAT (-21A/T & -262C/T), GPX1 
(-198C/T) and MPO (-463G/A) polymorphism were 
determined by digesting the PCR amplified products with 
HinfI, SmaI, ApaI and SsiI restriction enzymes (Table 1).

  
Statistical analysis 

Chi square and multivariate analysis tests were 

calculated to test the significance of genotype association 
with the occurrence of CML and its prognosis. All the 
p values were two sided and the level of significance was 
taken as p <0.05. Statistical analyses were performed using 
the GraphPad Prism software version 6.0 (San Diego, CA) 
and online VassarStats software. Haplotype and pairwise 
linkage disequilibrium was calculated using Haploview 
version 4.2 and cox regression analysis by SPSS version 
22 software.

Results

Baseline characteristics (Table 2)
The demographic and clinical characteristics of CML 

patients are presented in Table 2. The median age at 
diagnosis of CML was 42 years (range 12 to 89 years) and 
a male preponderance was observed with a male to female 
ratio of 1.6:1. Of the 125 patients, 102 cases presented 
in chronic phase, 13 in accelerated phase and 10 in blast 
crisis phase of CML. 

Prognostic scores like Sokal, Hasford, and EUTOS 
(European Treatment Outcome Study) were calculated 
for all patients using baseline hematological variables 
[21]. With Sokal risk scoring, 37.6% of patients had low 
risk and 62.4% had intermediate + high risk. With respect 
to Hasford risk score, 39.2% had low risk and 60.80% 
had intermediate + high risk. When EUTOS risk scores 
were considered, 72.0% of patients were presented with 
low risk and 28% with high EUTOS risk. Majority of 
patients were on imatinib (IM) treatment, nearly 42.4% 
of patients received higher IM doses (600mg/ 800mg), 
16.8% on IM standard dose (400mg), 16.0% on other 
drugs (2nd generation TKIs or on clinical trials), 16.8% 
deceased and 8% are newly diagnosed.

Median follow-up of these patients for a period of 40 
median months revealed that 20.8% had optimal response 
to imatinib and 79.02% of patients lost respone which 
might be either due to loss of complete hematological 
response (CHR), complete cytogenetic response (CCyR), 
major molecular response (MMR) or presence of TKD 
mutations. 

Correlation with CAT -21A/T polymorphism (Table 3)
The CAT -21A/T genotyping results revealed that 

heterozygous AT genotype frequency was observed to 
be significantly increased in CML patients compared to 
controls (p=0.037). This polymorphism was significantly 
assciated with increased risk of CML. With respect to 
molecular response, homozygous TT genotype and T allele 
frequencies were elevated in non-responders i.e., patients 
having higher BCR-ABL1 expression levels (44.70%, 
0.705) compared to responders i.e., patients having 
lower levels (35.0%, 0.625) (p=0.259). Heterozygous AT 
genotype frequency was found to be slightly increased in 
TKD mutation carriers (p=0.571) and in deceased group of 
patients (p=0.548) when compared to respective groups. 
No differences were found with either of the prognostic 
risk scores: Sokal, Hasford or EUTOS.

The CAT -21A/T polymorphism showed statistically 
significant association with risk of CML and conferred 
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patients (23.80%; 0.619) compared to those on follow-up 
(17.30%; 0.552) (p=0.404). No significant variations were 
found with prognostic risk scores.

In addition, the GPX1 -198C/T polymorphism 
increased the risk of CML under codominant model [CC vs 
CT (OR=7.316, 95% CI: 3.198-17.736, p=<0.0001), CC 
vs TT (OR=9.259, 95% CI: 3.489-24.571, p=<0.0001)] 
and dominant models [CC vs CT+TT (OR=7.628, 95% CI: 
3.362-17.310, p=<0.0001)], whereas overdominant model 
(CT vs CC+TT) was found to be protective against CML 
(OR=0.432, 95% CI: 0.262-0.711, p=0.001) (Table 8).

Correlation with MPO -463G/A polymorphism (Table 9)
The MPO -463G/A polymorphism demonstrated no 
significant association between cases and controls 
(p=0.494), nor with either of the confounding variables 
like molecular response (p=0.465), TKD mutation status 
(p=0.392), present status (p=0.767) and prognostic risk 
scores.

Correlation with GSTM1 & GSTT1 null/deletion 
polymorphism (Table 10)

No significant association observed with GSTM1 null 
polymorphism between cases and controls, molecular 
response, presence or absence of TKD mutations. Whereas 
GSTM1 presence genotype (M1) was found to be elevated 
in deceased group (80.95%) compared to those on 
follow-up (66.34%) (p=0.289).

With GSTT1 null polymorphism, the GSTT1 null 
genotype frequency slightly increased in cases compared 
to controls (22.4%; 16.0%) (p=0.193). When the results 
are stratified with confounding variables, the GSTT1 
null genotype frequency was found to be higher in 
non-responders (27.05%; 12.5%) and in patients not 
carrying TKD mutations (26.31%; 10.0%) compared to 
respective groups. There was no difference was observed 
between follow-up and deceased group of patients with 
GSTT1 null genotype. 

No significant differences were found between GSTM1 
& GSTT1 null/deletion polymorphisms and prognostic 

2.95 folds increased risk of CML under codominant 
(AA vs AT) model (OR=2.953, 95% CI: 1.206-7.228, 
p=0.024) and 2.51 folds risk under dominant (AA vs 
AT+TT) models (OR=2.518, 95% CI: 1.058-5.992, 
p=0.05), whereas overdominant model (AT vs AA+TT) 
was found to be protective against CML (OR=0.632, 95% 
CI: 0.404-0.994, p=0.060) (Table 4).

Correlation with CAT -262C/T polymorphism (Table 5)
There was no significant difference observed 

between cases and controls (p=0.711), molecular 
response (p=0.865) and presence or absence of TKD 
mutations (p=0.708) with CAT-262C/T polymorphism. 
This polymorphism was not assciated with risk of CML. 
Whereas the homozygous CC genotype and C allele 
frequencies were found to be elevated in the deceased 
group (71.42%, 0.857) compared to those patients on 
follow-up (50.0%; 0.711) (p=0.139). The prognostic risk 
scores were not associated with this polymorphism.

Haplotype analysis of the CAT gene (Table 6)
The haplotype analysis of the CAT gene polymorphisms 

(-21A/T and -262C/T) were performed and represented 
in Table 6. The haplotypes ATCC and ATCT conferred 
higher incidence of CML risk by 2.67 times (OR=2.678, 
95% CI: 1.051-6.825, p=0.05) and 2.99 times (OR=2.995, 
95% CI: 1.116-8.037, p=0.045).

Correlation with GPX1 -198C/T polymorphism (Table 7) 
The heterozygous CT genotype and T allele frequencies 

were significantly increased in CML patients compared to 
controls (p=<0.0001). With respect to molecular response 
and TKD mutation status, the heterozygous CT genotype 
frequency was observed to be significantly elevated in 
poor molecular responders group (patients having higher 
BCR-ABL1 levels) (p=0.005), TKD mutation carriers 
(p=0.114) and in patients of advanced phases (p=0.292) 
compared to respective groups. With respect to present 
status, the frequencies of TT genotype and T alleles 
were found to be slightly increased in deceased group of 

Gene SNP Primer sequence Product size Restriction enzyme
CAT -21A/T 5′- AATCAGAAGGCAGTCCTCCC-3′ 250bp HinfI

(rs7943316) 5′- TCGGGGAGCACAGAGTGTAC-3′ 
CAT -262C/T 5′- AGAGCCTCGCCCCGCCGGACCG-3′ 185bp SmaI

(rs1001179) 5′- TAAGAGCTGAGAAAGCATAGCT-3′
GPX -198C/T 5′- TCCAGACCATTGACATCGAG-3′ 222bp ApaI

(rs1050450) 5′- ACTGGGATCAACAGGACCAG-3′ 
MPO -463G/A 5′- CGGTATAGGCACACAATGGTGAG-3′  350bp SsiI

(rs2333227) 5′- CAATGGTTCAAGCGATTCTTC-3′ 
GSTM1 Deletion 5′- GAACTCCCTGAAAAGCTAAAGC-3′  219bp

(rs366631) 5′- GTTGGGCTCAAATATACGGTGG-3′ 
GSTT1 Deletion 5′- TTCCTTACTGGTCCTCACATCTC-3′ 480bp

(rs17856199) 5′- TCACCGGATCACGGCCAGCA-3′ 
Beta globin 5′-  ACACAACTGTGTTCACTAGC-3′ 299bp

5′- CAACTTCATCCACGTTCACC-3′ 

Table 1. Primer Sequences used for Analysis of Polymorphisms in Anti oxidant Enzyme Genes
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risk scores.
Haplotype, Linkage Disequilibrium (LD) and Cox 

Regression analysis:
The haplotype and pairwise epistasis among six SNPs 

did not revealed any significant association, hence data 
not presented. The linkage disequilibrium (LD) analysis 
revealed that the two CAT -21A/T (rs1001179) and CAT 
-262 C/T (rs7943316) exhibited high LD (D’=0.9). 
Since the two SNPs are located on chromosome 1, the 
observed significant LD might be attributed to the physical 
proximity. None of the other SNP combinations showed 
significant LD with D’<0.5 (Figure 1). Cox regression 
analysis of SNPs with BCR-ABL1 levels revealed no 
significant association.

Discussion

In the present study, we investigated the association of 
the genetic variations of the antioxidant enzymes: CAT 
(-21A/T, rs7943316 & -262C/T, rs1001179), GPX1 
(-198C/T, rs1050450), MPO (-463G/A, rs2333227) and 
GSTM1 (rs366631) & GSTT1 genes (rs17856199) with 
susceptibility to CML and their correlation with imatinib 
(TKI) response. 

Our results revealed statistically significant association 
of CAT -21A/T (p=0.037) and GPX1 -198C/T (p<0.0001) 
polymorphisms with the risk of CML. No significant 
associations were observed between CAT -262C/T 
(p=0.711), MPO -463G/A (p=0.494), GSTM1 and GSTT1 
null/deletion polymorphisms (p=1; p=0.193) and CML.  

Catalase is an endogenous antioxidant enzyme 
involved in ROS neutralizing pathways and prevents 

No %
Gender
     Males 77 61.6
     Females 48 38.4
Age at onset
     ≤ 42 years 60 48
     > 42 years 65 52
Phase
     Chronic 102 81.6
     Acute 23 18.4
Sokal risk
     Low 47 37.6
     Intermediate 33 26.4
     High 45 36
Hasford risk
     Low 49 39.2
     Intermediate 49 39.2
     High 27 21.6
EUTOS risk
     Low 90 72
     High 35 28
BCR-ABL1 levels 
     < 10% 40 32
     > 10% 85 68
TKD mutations
     Presence 30 24
     Absence 95 76
Present status
     Follow-up 104 83.2
     Deceased 21 16.8

Table 2. Patient Baseline Characteristics (n=125)

Table 3. Genotyping of CAT -21A/T Polymorphism 
Genotype frequency Allele frequency p value
AA AT TT Total A T

CML cases 7 (5.6%) 66 (52.8%) 52 (41.6%) 125 0.32 0.68 0.037
Controls 26 (13.0%) 83 (41.5%) 91 (45.5%) 200 0.337 0.662
BCR-ABL1 levels
     < 10% 4 (10.0%) 22 (55.0%) 14 (35.0%) 40 0.375 0.625 0.259
     > 10% 3 (3.52%) 44 (51.76%) 38 (44.70%) 85 0.294 0.705
TKD mutations
     Presence 2 (6.66%) 18 (60.0%) 10 (33.33%) 30 0.366 0.633 0.571
     Absence 5 (5.26%) 48 (50.52%) 42 (44.21%) 95 0.305 0.694
Present status
     Follow-up 5 (4.80%) 54 (51.92%) 45 (43.26%) 104 0.307 0.692 0.548
     Deceased 2 (9.52%) 12 (57.14%) 7 (33.33%) 21 0.38 0.619

Figure 1. LD plot
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cellular injury from ROS [22]. Two polymorphisms: CAT 
-21A/T with altered gene expression pattern [23] and 
CAT -262C/T with lower CAT enzyme activity [24] may 
alter ROS detoxification and increase oxidative stress, 
implicating oxidative DNA damage and modulating 
disease risk [25]. In the present study, the CAT -21A/T 
polymorphism was significantly associated with increased 
risk of CML (p=0.037). 

The stratified genotyping results with various 

confounding variables revealed that the homozygous 
variant TT genotype increased in non responders 
(p=0.259) and the heterozygous AT genotype frequency 
in TKD mutation carriers (p=0.571) and in deceased 
(p=0.548) group of patients. In addition, the codominant 
model (AA vs AT) (p=0.024) and dominant models 
(combined AT and TT genotypes) (p=0.05) presented 
significant association with increased risk of CML when 
compared with AA homozygote. Whereas Liu et al (2016) 

CML patients (n=125) Controls (n=200) OR (95% CI) p value
Codominant
     AA 7 (5.6%) 26 (13.0%)
     AT 66 (52.8%) 83 (41.5%) 2.953 (1.206-7.228) 0.024
     TT 52 (41.6%) 91 (45.5%) 2.122 (0.861-5.228) 0.145
Dominant
     AA 7 (5.44%) 26 (13.0%)
     AT+TT 118 (94.55%) 174 (7.0%) 2.518 (1.058-5.992) 0.050
Recessive
     AT+AA 73 (58.50%) 109 (54.5%)
     TT 52 (41.49%) 91 (45.5%) 0.853 (0.543-1.340) 0.565
Overdominant
     AT 66 83
     AA+TT 59 117 0.632 (0.404-0.994) 0.06

Table 4. Distribution of Odds Ratios between Cases vs Controls with CAT -21A/T Polymorphism

Table 5. Genotyping of CAT -262 C/T Polymorphism 
Genotype frequency Allele frequency p value

CC CT TT Total C T
CML cases 67 (53.6%) 50 (40.0%) 8 (6.4%) 125 0.736 0.264 0.711
Controls 116 (58.0%) 71 (35.5%) 13 (6.5%) 200 0.757 0.242
BCR-ABL1 levels
     < 10% 21 (52.5%) 17 (42.5%) 2 (5.0%) 40 0.737 0.262 0.865
     > 10% 46 (54.11%) 33 (38.82%) 6 (7.05%) 85 0.735 0.264
TKD mutations
     Presence 16 (53.33%) 13 (43.33%) 1 (3.33%) 30 0.75 0.25 0.708
     Absence 51 (53.68%) 37 (38.94%) 7 (7.36%) 95 0.731 0.268
Present status
Follow-up 52 (50.0%) 44 (42.30%) 8 (7.69%) 104 0.711 0.288 0.139
Deceased 15 (71.42%) 6 (28.57%) 0 21 0.857 0.142

Table 6. Distribution of CAT (-21A/T and -262C/T) Halotypes and their Correlation with Risk of CML

Haplotypes CML patients (n=125) Controls (n=200) OR (95% CI) p value
AACC 7 (5.6%) 25 (12.5%)
AACT 0 1 (0.5%)
AATT 0 0
ATCC 39 (31.2%) 52 (26.0%) 2.678 (1.051-6.825) 0.05
ATCT 26 (20.8%) 31 (15.5%) 2.995 (1.116-8.037) 0.045
ATTT 1 (0.8%) 0
TTCC 21 (16.8%) 40 (20.0%) 1.875 (0.696-5.049) 0.31
TTCT 24 (19.2%) 38 (19.0%) 2.556 (0.845-6.019) 0.157
TTTT 7 (5.6%) 13 (6.5%) 1.923 (0.554-0.298) 0.475



32 Asian Pacific Journal of Cancer Biology• Vol 6• Issue 1

apjcb.waocp.com                                 Sailaja Kagita, et al: Antioxidant Gene Polymorphisms and risk of Chronic Myeloid Leukemia (CML)

reported an increased cancer risk with recessive model 
and homozygote model [26]. This indicates that variant 
T allele with lower catalase activity and thus increased 
levels of ROS may contribute to genomic instability 
and increased risk of cancer. Earlier studies reported no 
significant associations with the risk of colorectal cancer 

[27], gastric cancer (GC) and hepatocellular carcinoma 
(HCC) [13].

In our study, we found no evidence of the CAT -262 
C/T polymorphism with CML risk or its association with 
confounding variables. Our results are in accordance with 
earlier studies that reported no significant association with 

Table 7. Genotyping of GPX1 -198C/T Polymorphism 
Genotype frequency Allele frequency p value

CC CT TT Total C T
CML cases 7 (5.6%) 95 (76.0%) 23 (18.4%) 125 0.436 0.564 <0.0001
Controls 62 (31.15%) 115 (57.78%) 22 (11.05%) 199 0.6 0.399
BCR-ABL1 levels
     < 10% 6 (15.0%) 26 (65.0%) 8 (20.0%) 40 0.475 0.525 0.005
     > 10% 1 (1.17%) 69 (81.17%) 15 (17.64%) 85 0.417 0.582
TKD mutations
     Presence 1 (3.33%) 27 (90.0%) 2 (6.66%) 30 0.483 0.516 0.114
     Absence 6 (6.31%) 68 (71.57%) 21 (22.10%) 95 0.421 0.578
Present status
     Follow-up 7 (6.73%) 79 (75.96%) 18 (17.30%) 104 0.447 0.552 0.404
     Deceased 0 16 (76.19%) 5 (23.80%) 21 0.38 0.619

Cases Controls OR (95% CI) p value
Codominant 
     CC 7 (5.6%) 62 (31.15%)
     CT 95 (76.0%) 115 (57.78%) 7.316 (3.198-17.736) <0.0001
     TT 23 (18.4%) 22 (11.05%) 9.259 (3.489-24.571) < 0.0001
Dominant 
     CC 7 (55.10%) 62 (58.0%) 7.628 (3.362-17.310) < 0.0001
     CT+TT 118 (44.89%) 137 (42.0%)
Recessive
     CT+CC 102 (93.87%) 177 (93.5%) 1.814 (0.963-3.417) 0.089
     TT 23 (6.12%) 22 (6.5%)
Overdominant
     CT 95 115
     CC+TT 30 84 0.043 (0.262-0.711) 0.001

Table 8. Distribution of Odds Ratios between Cases vs Controls with GPX1 -198C/T Polymorphism

Genotype frequency Allele frequency p value
GG GA AA Total G A

CML cases 90 (72.0%) 33 (26.4%) 2 (1.6%) 125 0.852 0.148 0.494
Controls 135 (67.5%) 58 (29.0%) 7 (3.5%) 200 0.82 0.18
BCR-ABL1 levels
     < 10% 26 (65.0%) 13 (32.5%) 1 (2.5%) 40 0.812 0.187 0.465
     > 10% 64 (75.29%) 20 (23.52%) 1 (1.17%) 85 0.87 0.129
TKD mutations
     Presence 19 (63.33%) 10 (33.33%) 1 (3.33%) 30 0.8 0.2 0.392
    Absence 71 (74.73%) 23 (24.21%) 1 (1.05%) 95 0.868 0.131
Present status
     Follow-up 74 (71.15%) 28 (26.92%) 2 (1.92%) 104 0.846 0.153 0.767
     Deceased 16 (76.15%) 5 (23.80%) 0 21 0.88 0.119

Table 9. Genotyping of MPO -G463A Polymorphism 
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risk of hepatocellular carcinoma [28], breast cancer [29], 
and gastric cancer [30]. Previous other studies showed 
significant increased risk of cervical cancer [15], breast 
cancer [31], hepatocellular carcinoma [32] and prostate 
cancer [33]. Whereas others reported that -262C/T 
polymorphism was a protective factor with respect 
to chronic myeloid leukemia [19] and hepatocellular 
carcinoma susceptibility [14-17].

GPX1 is a key enzyme of the antioxidative system 
that detoxifies peroxide radicals and lipid hydroperoxides. 
The -198C/T (Pro200Leu) polymorphism in GPX1 is 
associated with reduced enzyme activity [34-35]. Previous 
studies reported that higher GPX1 activity is required 
to counterbalance the ROS levels and related damage 
occurring during initiation or progression of the cancer 
[36-39]. We obseved statistically significant association 
of the homozygous variant TT genotype with CML 
risk (p=<0.0001). The stratified results of confounding 
variables presented the significant association of GPX1 
-198 C/T polymorphism with poor molecular response 
(p=0.005) and acquired TKD mutations (p=0.114). In 
addition, the codominant (CC vs CT and CC vs TT) and 
dominant (CC vs CT+TT) models conferred increased 
risk of CML when compared with CC homozygote 
(p=<0.0001). Our results were in accordance with others 
findings on breast cancer [39-41], bladder cancer [42] and 
lung cancer [43]. This indicates that the variant Leu allele 
with reduced enzyme activity might increase ROS levels 
thereby induced oxidative DNA damage and increased 
susceptibility to cancer. Whereas other studies failed to 
find an association of GPX1 -198C/T polymorphism with 
the risk of CML [19], breast cancer [44-45] and prostate 
cancer [46].

Glutathione S-transferases (GSTs) are involved in 
detoxification of a wide range of carcinogens and ROS 
thereby offering protection against oxidative DNA 
damage. GST enzymes are polymorphic, which may 
contribute to the inter-individual variability in the response 
to oxidative stress suggesting its role in carcinogenesis 
and risk for cancer. In the present study, the GSTM1 and 
GSTT1 null/deletion polymorphisms were not associated 
with risk of CML. Our results are similar with earlier 

studies on CML [20]. Previous studies on the GSTT1 null 
polymorphism reported positive association with risk of 
CML [47-50] and AML [20]. Earlier studies on GSTM1 
null polymorphism showed no association the risk of CML 
[50], AML [51] and breast cancer [52].

Myeloperoxidase (MPO) is an endogenous oxidant 
enzyme that activates carcinogens [53]. A single 
nucleotide polymorphism in the promoter region of the 
MPO gene, G-463A (rs2333227) has been associated 
with reduced mRNA expression and transcriptional 
activity and subsequent decreased metabolic activation 
of procarcinogens [54]. In the present study, no evidence 
of MPO -463G/A polymorphism with the risk of CML 
was observed. Our results were in accordance with earlier 
studies on ALL [55], AML [56] and breast cancer [57]. 
Whereas others reported that the A allele with reduced 
MPO activity and ROS production has been associated 
with decreased risk of breast cancer [58], lung cancer [59] 
and prostate cancer [60].

In conclusion, our results suggest that the reduced 
activity of antioxidant enzymes caused by the CAT -21A/T 
and GPX1-198C/T polymorphisms might contribute to 
increased risk of CML. In addition, the GPX1-198C/T 
polymorphism was associated with poor molecular 
response and acquired TKD mutations. Hence, the present 
study indicates that defective antioxidant defense system 
might have a strong influence on CML susceptibility and 
TKI (imatinib) response through oxidative stress.
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Genotype frequencies
T1 T0 p value M1 M0 p value Total 

CML cases 97 (77.6%) 28 (22.4%) 0.193 86 (68.8%) 39 (31.2%) 1 125
Controls 168 (84.0%) 32 (16.0%) 136 (68.0%) 64 (32.0%) 200
BCR-ABL1 levels
< 10% 35 (87.5%) 5 (12.5%) 0.111 27 (67.5%) 13 (32.5%) 1 40
> 10% 62 (72.94%) 23 (27.05%) 59 (69.41%) 26 (30.58%) 85
TKD mutations
Presence 27 (90.0%) 3 (10.0%) 0.105 22 (73.33%) 8 (26.66%) 0.698 30
Absence 70 (73.68%) 25 (26.31%) 64 (67.36%) 31 (32.63%) 95
Present status
Follow-up 80 (76.92%) 24 (23.07%) 0.92 69 (66.34%) 35 (33.65%) 0.289 104
Deceased 17 (80.95%) 4 (19.04%) 17 (80.95%) 4 (19.04%) 21

Table 10. Genotyping of GSTM1 & GSTT1 Deletion Polymorphism
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