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Introduction

In the early 1970s, cancer research was mostly 
concerned with the cancer-causing viruses that were 
evidenced to become oncogene. In 1979 the p53 was 
first discovered as a protein associated with SV40 large 
T antigen [1]. In 1989, it was first observed that the 
mutations in TP53 lead to colorectal cancer [2]. It took 
almost 10 years to realize the wild type p53 as a tumor 
suppressor protein [2]. p53 acts as a hub node in regulating 
the normal cell life like DNA damage control, signal 
transduction, metabolism, cell cycle checkpoints as 
well as in apoptosis [3]. Wild type p53 binds DNA in a 
sequence-specific manner while mutant p53 fails to bind 
to the consensus sequence of wild type target [4,5]. Wide 
spectrums of genes associated with a range of typical 
functions performed in cells are somewhat directly or 
indirectly regulated by the p53 functional domain [6,7]. 
The genetic variations in TP53, located in chromosome 
17p13.1 contribute to human cancers within which the 
major contributions are of somatic mutations. Germline 
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mutations also to some extent confer on mutant p53 
network that affects inheritable mutability through TP53 
mutations accumulation. Mutations of p53 in specific 
regions give rise to cancers in different cell types and 
not only so, but it also regulates the typical phenotypic 
expressions of cancer cells to a large extent [8-10]. These 
conventional, as well as altered networks for both wild 
type and mutant p53 respectively, make it an interesting 
gene to study in the realm of molecular oncology.  

p53 Domain Structure
The Full-length p53 (FLp53) consists of a total of 393 

amino acid residues with distinct functional domains. 
Functional p53 is a dimer of dimers that are oligomerized 
to be p53 tetramer through the hydrophobic interactions 
between Leucine 344 and 348 in the oligomerization 
domain [11,12] 

Structurally p53 has five distinct domains, as __ 
N-terminal transactivation domain (TAD), proline-rich 
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domain (PRD), DNA-binding domain (DBD), 
oligomerization domain (OD), and carboxyl-terminal 
regulatory domain (CTD) (Figure 1).  

The N-terminus TAD of FLp53 is subdivided into two 
subdomains as TAD I (1-40 residues) and TAD II (41-67 
residues) that can independently activate the transcription 
of target genes like p21, PUMA. NOXA [13,14]. PRD 
(68-98 residues) links TAD and DBD with 12 proline 
residues [14]. DBD (94-292 residues) recognizes and 
binds specifically targeted DNA consensus sites known 
as ‘response element’ (RE) [15]. The role of the region 
sequenced from 293 – 326 is not known [12]. OD (326-353 
residues) forms dimer through interaction between helices 
to form a tetramer [11]. It also contains a Nuclear Export 
Signal (NES) that is masked by the tetramerization of 
p53. DNA binding is achieved by interactions between the 
DBD and OD [16,17]. CTD (353-393 residues) controls 
the structure and function of the entire protein and is also 
important in recognizing and binding to damaged DNA 
by a non-specific interaction. The natively unfolded TADs 
also interact with various kinds of other proteins like 
transcription factor II A, II D and II H (TFIIA, TFIID, 
TFIIH), TATA-box binding protein (TBP), mouse double 
minute 2 homologs (MDM2) [13,18]. 

In absence of DNA, p53 forms a more loosely arranged 
cross-like structure though in tight binding with DNA, p53 
becomes more rigid and compact [19].

p53 Transcription Auto Regulation and Transcriptional 
Activation of Several Genes by Wild Type p53

Wild type p53 role is crucial in cell cycle checkpoints 
in response to DNA damage or in critical cellular stress 
to prevent tumorigenesis. Upon induction to damage, the 
TP53 gene transcription is enhanced to form p53 protein 
that accumulates to interact with Damage Response 
Factors (DRF), or it targets transcription of p53 target 
genes through p53 Response Elements (REs) interaction 
with p53 DNA Binding Domain (DBD) [20,21]. 

Transcription of wtp53 (Wild type p53) is said 
to be autoregulated by a feedback mechanism [22]. 
Two proposed models are conflicting with each other by 
which p53 can auto-regulate its transcription. One is p53 
indirectly interact with TP53 promoter via TATA-box 
binding protein (TBP) [23,24] or CAAT-box binding 
factor (CBF) [25]. Wild type p53 interacts with one or 
more of these proteins to regulate its promoter in a cell 
type-specific manner [26] (Figure 2B). In another model, 
it is proposed that p53 directly interacts with TP53 
promoter elements and enhances TP53 transcription 
[22,27] (Figure 2A). 

In response to cellular stress signals such as DNA 
damage, telomere erosion, hypoxia/anoxia, senescence, or 
mitophagy, wtp53 also activates p53 target gene expression 
by binding with p53 DNA binding domain preferentially 
with p53 Response Elements and accumulates because 
of decreased level of MDM2 (Figure 3). Transcription 
regulatory elements such as transcription factors (TFs), 
Histone acetyltransferase (HAT) such as p300 are also 
recruited by wtp53 and acetylates (+Ac) p53 as well as 
chromatin [20]. This promotes additional steps such as 

SWI/SNF Chromatin Remodeling Complex (CRC) [28] 
recruitment that delocalizes Histones in an ATP-dependent 
manner and RNA Polymerase II can bind to open promoter 
of p53 target gene and facilitates elongation (Figure 2D). 
Such a gene is p21 that regulates the expression of cyclin 
E/ Cyclin-dependent kinase. 

p53 also interacts with various Damage Response 
Factors (DRF) such as Replication protein A (RPA), 
translesion polymerases, etc. Wtp53 also has a potential 
role to control what kind of repair pathway like 
Base Excision Repair (BER), Nucleotide Excision 
Repair (NER), Mismatch Repair (MMR), Homologous 
Recombination (HR), or Non-homologous End Joining 
(NHEJ) will induce [21] (Figure 2C). And if all these 
kinds of repair systems fail to repair the cellular damage, 
p53 induces apoptosis by interacting with members of 
BCL-2 family proteins in mitochondria by displacing 
pro-apoptotic members from pro-apoptotic BCL-2 
proteins [21] or by directly activating BAX [29] or BAK 
to induce Mitochondrial outer membrane permeabilization 
(MOMP) [21] to release cytochrome c, resulting in 
programmed cell death (Figure 2E).

 
Mutation Occurance in p53

Various mutations at specific sites in wild type 
TP53 converts the tumor suppressor proto-oncogene 
to oncogene and leads to various kinds of cancer in a 
wide range of tissue. A wide spectrum of mutations is 
reported from p53 mutants as Nonsense substitution, 
Missense substitution, Inframe insertions, Inframe 
deletions, Frameshift insertions, Frameshift deletions, 
etc. Data on mutation prevalence in cancer can be easily 
accessed from the COSMIC database. Analyzing a wide 
range of unique samples of 48912 reveals that most of 
the mutations are occurred due to Missense substitution 
– 30575 (62.3%) and Nonsense substitution - 5187 
(10.6%). Also, other kinds of mutations are accumulated 
in a certain percentage that is observed from the sample 
study [data are adapted from the COSMIC dataset; 
https://cancer.sanger.ac.uk/cosmic/gene/analysis? 
ln=TP53#distribution] (Figure 4A). Another study of 
32412 unique samples reveals that the rate of transition 
is much greater (63.9%) than transversions (36.1%) [data 
are adapted from the COSMIC dataset; https://cancer.
sanger.ac.uk/cosmic/gene/analysis?ln=TP53#distribution] 
(Figure 4B). The G to A and C to T transitions are higher 
in number constituting about 80.94% of all and the G to 
T transversions rate is also higher in percentage (40.62%) 
[data are adapted from COSMIC database; https://cancer.
sanger.ac.uk/cosmic/gene/analysis?ln=TP53#distribution] 
(Figure 4C and 4D). 

Mutation hotspots
Majorly the mutations in the DNA binding domain of 

p53 result in the alteration of structures as well as functions 
of p53. From the COSMIC dataset mainly ten hotspot 
regions can be found which include V157F, R175, Y220C, 
G245, R248, R249, R273, R282 [30] (Figure 5). Seven 
hotspot mutations that are occurred in the DNA binding 
domain are mostly prevalent (R175H, R248Q, R249S, 
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Regulation by Mutant p53 in Broad Spectrum, Leading 
to Cancer

Faulty transactivation of different p53 target genes, 
as well as signaling pathways, are mainly mediated due 
to mutation accumulation in the DNA binding domain 
(DBD) of p53. In 2017, Pfister et. al. speculated a possible 
mechanism of mutant p53 transcriptional activity [33]. 
Despite directly binding with p53 target gene Response 
Element (RE) mutp53 (mutant p53) interacts with 
various transcription factors (TFs). Mutant p53 co-opts 
a set of transcription factors (TFs) that are mainly DNA 
bound and various co-activators (recruited by either 
TFs or mutant p53) to initiate gene expression. Though 
the mechanisms of co-opting individual transcription 
factors as well as induction and/or activation of cell 
signaling are broadly unclear and may be dependent on 
specific p53 mutations. It is also speculated that mutant 
p53 is involved in the change of chromatin architecture 
by recruiting known or unknown Chromatin-modifying 
machinery [41,42]. Mutant p53 also has been reported to 
induce the receptor tyrosine kinases and other signaling 
components to promote pro-proliferative signaling [43,44]. 
The accumulation of hotspot mutations in TP53 facilitates 
the transcription plasticity and tumor cells increase 
the capacity of gene expression changes in a particular 
tumor context (Table 1). It is also reported that one p53 
mutant behaves differently than other mutants based on 
their confirmation, binding pattern, cellular localization, 
or transactivation capacity through p53 gain of function 

R248W, R273H, R273C, R282W) over large evolutionary 
timescales [31]. 

 Some mutagens contribute to the formation of 
hotspot mutations like solar UV leads to skin cancers 
(non-melanoma) at hotspot region R248W, R282W, or due 
to tobacco smoke in regions like G245V, G245C, G245S, 
R249M [32]. Methylation of CpG residues also leads to 
the mutation of the TP53 gene and can be explained why 
the mutation rate at Arginine (R) residue is higher. Four of 
the total six codons encode for arginine have CpG at the 
first two positions and U, A, G, or C at the third position 
and these are the codons that encode arginine due to seven 
hotspot mutations [30]. The methylated CpG also leads to 
the higher mutation rate in C to T and G to A mutations 
are due to antisense of G is methylated C that leads to 
thymine (T) upon deamination and forming G: C to A: T 
pairs [30]. Among 22 CpG of DNA-binding domain three 
hotspot residues (175, 248, 273) represent 60% of CpG 
mutations, and five other residues (196, 213, 245, 282, 
306) represent around 26% of these mutations. 

Somatic and germline mutations are also prevalent in 
a huge percentage due to mutations in p53. Somatic TP53 
mutations occur in almost every type of cancer in rate 
from 38%-50% in ovarian, esophageal, colorectal, head 
and neck, larynx, and lung cancer to about 5% primary 
leukemia, testicular cancer, cervical cancer, malignant 
melanoma, etc. [30, 93] and germline mutations are the 
main cause of Li-Fraumeni Syndrome (LFS) [30,93].  

Domain Mutations Cell lines Associated disease Ref. 
DBD C194D T47D Breast Cancer [34]

H193L CAL27 Head and Neck Cancer [34]
M237I SUM149PT Breast Cancer [37]
R110P SaOS-2 Osteosarcoma [35]
R175H HEK293T Embryonic kidney [36]
R175H SKBr3 Breast Cancer [34]
R175H H1299 Lung Cancer [34]
R175H HCC1395 Breast Cancer [37]
R248L FaDu Head and neck Cancer [34]
R248W MDAH087 Li-Fraumeni syndrome [38]
R248W MIA PaCa-2 Pancreatic Cancer [38]
R248W Colo320 Colon Cancer [57]
R249S BT-549 Breast Cancer [37]
R273H MDA-MB-468 Breast Cancer [36]
R273H U373 Glioblastoma [39]
R273H SNB19 Glioblastoma [39]
R273H HT-29 Colon Cancer [40]
R273H H1299 Lung Cancer [34]
R273H PANC-1 Pancreatic Cancer [34]
R273H MDA-MB-468 Breast Cancer [34]
R273H SW480 and SW620 Colon Cancer [57]
R273H MDA-MB-468 Breast Cancer [37]
R280K MDA-MD-231 Breast Cancer [34]

Table 1. Cancer Induction by Specific p53 Mutants Over Various Cell Lines
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Figure 1. Domains of Full-length Protein p53 with Specific Residue Range 

Figure 2. p53 Transcription is Postulated to be Autoregulated by Either Direct Interaction of p53 Proteins with TP53 
Promoter (A) or Interactions with TBP, CBF (B), though Further Investigation is Needed. p53 then activates the 
p53 target gene response element by recruiting Histone acetyltransferase (HAT), Chromatin remodeling complex 
(CRC), and turn the transcription of target gene on (D). p53 also interacts with Damage response factors (DRF) in 
DNA damage and helps to choose the repair mechanism (C). p53 also interacts in the pathway of apoptosis which is 
facilitated by many reasons one of which is a failure in repair phenomenon (E). 

depends on types of cells and tumor context [33]. 

Dominant Negative Effect of Mutp53 on Wild Type p53
The p53 mutants exert an inhibitory effect on the wild 

type p53, as a result of which the wild type p53 is prevented 
from exerting its canonical, normal functions. This is 
known as the Dominant-negative effect (DNE) (Figure 6) 
[45]. DNE occurs in cancer but its mechanism has not 
been fully understood. There are several hypotheses out of 
which one states that mutp53 heterotetramerise with wild 
type p53 as the tetramerization domain of most p53 DNA 
binding domain missense mutants are not altered. This 
heterotetramerisation of mutant p53 with wild-type p53 
diminishes the wild-type p53 activity [46]. 

This is relevant to p53 conformational mutants but not 
for contact mutants [47]. For contact mutants, it has been 
proposed that the mutp53 fails to transactivate certain p53 

target genes [48]. The wild type/mutant heterotetramer is 
unable to bind DNA with a high affinity as a wild type 
p53 homotetramer would [49]. However, there are other 
possibilities that define the DNE of mutp53. Mutp53 
can bind to the transcriptional cofactors required for 
wild-type p53 activity [50]. The function of wild-type 
p53 is inhibited by mutp53 via a DNE in a heterozygous 
condition wherein both wild-type and mutant p53 alleles 
are present [51].

Gain of Function
Many missense mutp53 are accompanied by new 

oncogenic functions that are otherwise absent in the wild 
type p53. These functions help in promoting tumorigenesis. 
This is referred to as Gain of Function (GOF) [52]. As an 
instance, when compared with p53 knock-out mice, 
mutp53 knock-in mice (R172H and R270H) developed 
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Figure 3. p53 Regulation Network; Upon Induction through Various Stress Signals Via Different Activating Pathways 
p53 is Activated (demonstrated via green arrows). It is also negatively regulated via inhibiting control of different 
gene products (shown via red arrow in p53 controls) and p53 is epigenetically regulated. The nascent p53 becomes 
functional through post-translational modifications (demonstrated by the blue arrow) to activate p53 transcription 
target genes that are essential for various important pathways like DNA repair, cell cycle arrest, etc. The genes that are 
highlighted with red are the early transcriptional target of p53 [24,26] 
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more metastatic tumors [53]. Patients with Li-Fraumeni 
syndrome, carrying germline heterozygous p53 mutations 
and those with p53 missense mutations develop cancer 
at an early stage than those patients with p53 deletion 
mutations [54]. The majority of the p53 mutations that are 
related to cancer produce proteins that are not truncated 
and carry only a single amino acid mutation rather than a 
non-functional truncated protein [55]. GOF mutp53 has 
been reported to exhibit various functions such as cell 
proliferation, metastasis, chemoresistance, metabolic 
reprogramming, cell stemness, etc [8-10].

Mutp53 Assists Cell Proliferation 
P53 mutants exhibiting GOF assist cell proliferation, 

unlike wild-type p53. GOF mutp53 binds to transcription 
factors such as NF-Y and p300 and promotes the 
transcription of genes such as cyclin B1, CDK1, 
CDC25C, thereby stimulating progression through the 
cell cycle (Figure 7A) [56]. Mutp53 binds to another 
transcription factor, yes-associated protein (YAP), and 
stimulates the transcription of cyclin A, CDK1, cyclin B, 
yet again promoting cell cycle progression and thereby 

cell proliferation (Figure 7B) [57]. Mutp53 interacts 
with the promoter of MAP2K3 which, in turn, recruits 
NF-Y and NFκB to the promoter stimulating MAP2K3 
to promote cell cycle progression [58]. In Hepatitis 
B virus-positive hepatocellular carcinoma, mutant 
p53-R249S is phosphorylated by CDK4 at Ser249 residue 
in the G1/S phase. This phosphorylation stimulates its 
nuclear localization. The phosphorylated p53-R249S 
interacts with Pin1 and is transported to the nucleus where 
it binds and stabilizes c-Myc, a nuclear transcriptional 
factor necessary for proliferation and survival of cancer 
stem cells, thereby stimulating ribosomal biogenesis 
and hence promoting hepatocellular carcinoma growth 
[59]. Furthermore, mutp53 causes the interaction of 
EGFR and α5β1 with Rab-coupling protein (RCP) and 
the subsequent translocation of the same to the cell 
membranes. This stimulates the PI3K/AKT or MAPK 
cell signaling pathways, ultimately stimulating cell 
proliferation [9]. R273H mutp53 has also been reported 
to bind to the promoter region of miR-27a, a negative 
regulator of EGFR transcript, and suppress its expression, 
hence activating EGFR/ERK pathways and promoting cell 
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Figure 4. Statistical Representation of Data Adopted from COSMIC Database on p53 Mutation Profile. Overall 
mutation profile (A), transition and transversion (B), transition profile (C) and transversion profile (D) are shown here. 

A

B

C
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Figure 5. Mutation Hotspot in TP53

Continued Figure 4.
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proliferation [82].

Mutp53 Helps in Metastasis
By promoting EMT, mutp53 helps in metastasis. 

Mutp53 induces ZEB1 expression which is an EMT-related 
transcription factor, by inhibiting the expression of 
miR-130b. It directly binds and transrepresses the promoter 
of miR-130b, thereby stimulating epithelial-mesenchymal 
transition (EMT) [60]. Mutp53 also induces Twist, another 
transcription factor of the EMT pathway [61]. Mutp53 

forms a complex with p63, a p53 family member and 
an inhibitor of metastasis, using Smad2/3 (activated by 
TGFβ) as a molecular bridge between the two proteins 
(Figure 8A). The function of p63 is thereby inhibited and 
as it cannot upregulate metastatic suppressor genes, EMT 
is favored [62]. Rac1 is a small GTPase that plays an 
important role in cell motility and growth. Mutp53 binds 
to Rac1 and inhibits the interaction of Rac1 with SENP1, 
thereby inhibiting Rac1 deSUMOylation and activating 
Rac1 which promotes metastasis (Figure 8B) [63]. 

Figure 6. Dominant Negative Effect of Mutant p53 on Wild-type p53. Mutp53 inhibits the activities of the wild-type 
p53 to promote tumorigenesis. This phenomenon is referred to as the Dominant-negative-effect of mutp53 on wild-type 
p53.
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Hsp90 alpha isoforms are specially secreted by cancer 
cells with mutp53. They interact with MMP-2 (matrix 
metalloproteinase-2), stabilizing it for the degradation of 
ECM. This helps the cancer cells to metastasize [64]. 
PDGFRβ (Platelet-derived growth factor receptor β) 
stimulates various signaling pathways that control cellular 
movement. p73 binds to NF-Y (transcriptional activators 
of PDGFRβ) and inhibits it from binding and activating 
PDGFRβ promoter. Mutp53 disrupts the interaction 
between p73 and NF-Y and hence activates PDGFRβ, 
thereby promoting pancreatic cancer metastasis [65].

 
Mutp53 is Responsible for Metabolic Reprogramming  

Mutp53 promotes the uptake of glucose by the cancer 
cells and the secretion of lactate even under aerobic 
conditions. This is known as the Warburg effect [66]. 
Wild-type p53 represses this effect by promoting the 
expression of genes that are necessary for oxidative 
phosphorylation [67]. Mutp53 has been found to increase 
the translocation of GLUT1 to the plasma membrane by 
activating a GTPase-RhoA and its downstream effector 
kinase ROCK, thereby enhancing the uptake of glucose 

and hence glycolysis [68]. Mutp53 also activates the 
mevalonate pathway. It binds to and activates SREBP 
(Sterol Regulatory Element-Binding Protein) which is 
a transcriptional factor that in turn activates HMG-CoA 
Reductase [69]. Thus, the activation of this pathway also 
activates RhoA and therefore, YAP or TAZ oncoproteins 
[70]. Enhancement of anabolic pathways’ activation is 
important in cancer cells as they help in the formation of 
macromolecules required for tumor growth. Mutp53 helps 
in enhancing the activation of anabolic pathways by 
inhibiting AMPK which is a Ser/Thr kinase. It is activated 
at high AMP levels, indicating energy stress [71]. Mutp53 
binds to the AMPK α subunit and inhibits it. AMPK 
promotes catabolic pathways and inhibits anabolic 
pathways [72]. Mutp53 increases the level of reactive 
oxygen species (ROS) in cancer cells by decreasing 
glutathione synthesis, resulting in the accumulation of 
ROS. Wild type p53 activates the TIGAR gene which 
blocks glycolysis and favors the Pentose phosphate 
pathway resulting in NADPH production which helps 
in generating reduced glutathione. By this method, 
wild-type p53 decreases ROS production [73]. Thus, in the 

Figure 7. A). Interaction of Mutant p53 with NF-Y and p300. Mutant p53 interacts with HDAC1 independent of DNA 
damage and suppresses the expression of NF-Y target genes. Upon DNA damage, mutant p53 interacts with p300 and 
promotes the expression of NF-Y target genes. B). Interaction of mutant p53 with YAP. Mutant p53 interacts with YAP 
and promotes the expression of proliferative genes. 

Figure 8. A) Inhibition of p63 by Mutant p53 Via Smad2/3. Metastasis is inhibited by p63 but, when it is bound by 
mutant p53 via the Smad complex, its activity is inhibited, and thereby metastasis is promoted. B) Mutant p53 inhibits 
de-SUMOylation of Rac1 by SENP1. Upon De-SUMOylation by SENP1, Rac1 is inactivated. This is prevented by 
mutp53, which, binds to Rac1 and inhibits its de-SUMOylation, thereby promoting migration.
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presence of mutp53, there is an increase in oxidative stress. 
However, cancer cells are protected from such stresses 
by the same TIGAR gene [74]. Mutp53 also activates the 
NRF2 gene thereby promoting an oxidative stress survival 
response that protects the cancer cells from ROS. At the 
same time, mutp53 represses other targets of NRF2 such as 
heme oxygenase1 (HMOX1) which has cytotoxic effects 
on cancer cells but protects the normal cells [75].

Cell Stemness is Promoted by Mutp53
A study proposed that cancer stemness is promoted by 

mutp53 in glioblastoma and breast cancer cells by activating 
the PI3K/AKT2 mediated growth factor receptor cycling. 
AKT2 in turn phosphorylates WIP (WASP-interacting 
protein) which stabilizes YAP/TAZ thereby supporting 
CSC survival [76]. Further, mutp53 interacts with SREBP 
and activates the mevalonate pathway. This pathway 
produces geranylgeranyl pyrophosphate which activates 
a small GTPase, Rho which in turn activates YAP/TAZ 
thereby promoting self-renewal of breast cancer cells 
[70]. In hematopoietic stem cells, mutp53 promoted an 
increased ability to self-renew by upregulating FoxH1, 
which is a regulator of stem cell factor receptor c-kit and 
SCA-1 (Stem Cell Antigen 1) [77].

Mutp53- The Culprit Behind Failed Cancer Therapies  
GOF mutp53 promotes resistance to anticancer drugs 

and therapies and plays a major role in cancer-related death 
[78]. Among patients with breast cancer, it was observed 
that those with mutp53 had a lower chance of survival than 
those with wild-type p53 tumors [79]. In carcinoma cells, 
it was found that mutp53 provides resistance to various 
chemotherapeutic drugs like cisplatin, doxorubicin, and 
5-fluorouracil by inhibiting apoptosis via procaspase-3 
repression [80]. In breast cancer with mutant p53, it was 
shown that through the inhibition of miR-30c and REV1, 
resistance to adriamycin was achieved indicating that 
mutp53 favors the DNA damage repair (DDR) pathway. 
Chemotherapeutic drugs induce DNA damage in cancer 
cells and therefore promoting the DDR pathway provides 
resistance against these drugs [81]. Studies have shown 
that mutp53 increases the resistance of glioblastoma 
to temozolomide by increasing MGMT expression 
(O6-methyl guanine DNA-methyltransferase), which 
is an enzyme involved in the repair of DNA damaged 
by the drug temozolomide [82]. It has been reported 
recently that mutp53 affects EFNB2, a receptor tyrosine 
kinase involved in the regulation of migration, invasion, 
and tumor resistance [83]. When colorectal carcinoma 
cells were treated with 5-FU, mutp53 increased EFNB2 
expression. EFNB2, in turn, upregulates ABCG2 
(ATP-binding cassette sub-family G2), a multidrug 
resistance efflux transporter, via the activation of the 
JNK pathway [84]. When Ca2+ is transferred from the 
endoplasmic reticulum to the mitochondria, this causes 
pro-apoptotic responses. If this process is interfered 
with, the chances of cell survival increases. Under 
stress conditions, wild-type p53 increases the transfer of 
Ca2+ from the endoplasmic reticulum to mitochondria, 
promoting apoptosis [85]. In the presence of mutp53, Ca2+ 

is not transferred from the endoplasmic reticulum of cancer 
cells to the mitochondria, promoting chemoresistance to 
stressful treatments [86]. In colorectal cancer, it was shown 
that mutp53-R273H provides resistance against 5-FU by 
downregulating the proapoptotic protein PUMA, which is 
an activator of BAX, a proapoptotic protein. Mutp53 was 
unable to bind to the PUMA promoter, thereby inhibiting 
its transcription. Thus, mutp53 decreases the apoptotic 
activity of BAX [87]. Mutp53 provides chemoresistance 
by inducing the expression of Cytochrome P450 
(CYP450) family members such as CYP3A4. This 
enzyme metabolizes several chemotherapeutic drugs thus 
providing cancer cells resistance against them [88]. 

In conclusions, P53 protein is known as the ‘Guardian of 
the genome’ as it regulates the expression of several genes 
involved in DNA repair, cell growth, apoptosis, and 
senescence. It is therefore a tumor suppressor gene [89]. 
However, when the TP53 gene is mutated, it promotes 
tumorigenesis via its GOF activities [52]. It is mutated 
in more than 50% of human cancers and is, therefore, 
an important target for cancer therapy [90]. Targeting 
mutp53 comes with a lot of challenges, one of which 
is reactivating wtp53 as it is a tumor suppressor gene. 
Unfortunately, this is a difficult task as it is easier to inhibit 
a protein than to activate it [91]. Thus, to treat cancers 
with TP53 mutations, new strategies are necessary [92]. 
In terms of their biological effects, TP53 mutations are 
diverse and may take place at different stages of tumor 
development. This makes it extremely difficult to extract 
information for clinical purposes [93]. Since p53 plays a 
major role in cancer biology, strategies are required that 
activate apoptosis mediated by p53 and also suppress 
the dominant-negative effect of mutp53 on wtp53 [94]. 
The role of MDM2 is to inhibit p53 as well as cause the 
proteasomal breakdown of the protein. Thus, as a new 
therapeutic approach, an MDM2 antagonist can be used to 
activate p53. Nutlin, an inhibitor of p53-MDM2 binding 
was discovered by Vassilev et al. As a result of this, p53 
is stabilized and p53- mediated apoptotic pathway is 
activated in cancer cells with wtp53 [95]. Additionally, 
an inhibitor of MDM2, M1-219 has also been shown 
to be an effective agent in reactivating p53 [96]. Thus, 
using such agents in cancer therapy and developing 
various strategies that reactivate p53 is required for 
treating malignant tumors with mutp53, effectively [92]. 
Unfortunately, there are several unresolved areas in cancer 
therapy targeting mutp53. More studies are required in 
this field which would eventually, in the future provide 
effective, efficient, and precise cancer treatments targeting 
mutp53 [68]. Although a lot of progress has been made 
in the studies of the role of mutp53 in cancer, all the 
information is still very limited. More research on the same 
and the mechanism of mutp53’s GOF activities as well as 
the dominant-negative effect of mutp53 on wtp53 will be 
the next big achievement in cancer research.
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